9709 w11 ms 22

| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - October/November 2011 | 9709 | 22 |

$\begin{array}{llr}1 \text { EITHER } & \text { State or imply non-modular inequality }(x+2)^{2}>\left(\frac{1}{2} x-2\right)^{2} \text {, or corresponding } & \\ & \begin{array}{ll}\text { equation or pair of linear equations } \\ \text { Make reasonable solution attempt at a 3-term quadratic, or solve two linear } \\ \text { equations }\end{array} & \text { M1 } \\ & \text { Obtain critical values }-8 \text { and } 0 & \text { M1 } \\ & \text { State correct answer } x<-8 \text { or } x>0 & \text { A1 } \\ \text { OR } & \begin{array}{ll}\text { Obtain one critical value, e.g. } x=-8, \text { by solving a linear equation (or inequality) or } \\ \text { from a graphical method or by inspection }\end{array} & \text { B1 } \\ & \begin{array}{ll}\text { Obtain the other critical value similarly }\end{array} & \text { B2 } \\ & \text { State correct answer } x<-8 \text { or } x>0 & \text { B1 }\end{array}$

2 Use law for the logarithm of a product, a quotient or a power M1*
Obtain $(x+1) \log 4=(2 x-3) \log 5$, or equivalent A1
Solve for $x \quad$ M1(dep*)
Obtain answer $x=3.39$ A1

3 (i) Obtain correct derivative B1
Obtain $x=2$ only
B1
(ii) State or imply correct ordinates $0.61370 \ldots, 0.80277 \ldots, 1.22741 \ldots, 1.78112 \ldots$ B1

Use correct formula, or equivalent, correctly with $h=1$ and four ordinates M1
Obtain answer 3.23 with no errors seen
(iii) Justify statement that the trapezium rule gives an over-estimate

4 State at least one correct integral B1
Use limits correctly to obtain an equation in $e^{2 k}, e^{4 k} \quad$ M1
Carry out recognizable solution method for quadratic in $e^{2 k} \quad$ M1
$\begin{array}{ll}\text { Obtain } e^{2 k}=1 \text { and } e^{2 k}=3 & \text { A1 }\end{array}$
Use logarithmic method to solve an equation of the form $\mathrm{e}^{\lambda a}=b$, where $b>0 \quad$ M1
Obtain answer $k=\frac{1}{2} \ln 3$

5 (i) Make a recognisable sketch of a relevant graph, e.g. $y=\sin x$ or $y=\frac{1}{x} \quad$ B1
Sketch a second relevant graph and justify the given statement
(ii) Consider sign of $\frac{1}{x}-\sin x$ at $x=1.1$ and $x=1.2$, or equivalent

Complete the argument correctly with appropriate calculations
(iii) Use the iterative formula correctly at least once M1

Obtain final answer 1.11
Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval $(1.105,1.115)$ the (1.105, 1.115)

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |

6 (i) State $\frac{d x}{d t}=4 \sin \theta \cos \theta$ or equivalent (nothing for $\frac{d y}{d x}=4 \sec ^{2} \theta$ ) B1

Use $\frac{d y}{d x}=\frac{d y}{d \theta} \div \frac{d x}{d \theta}$ M1

Obtain given answer correctly
(ii) Substitute $\theta=\frac{\pi}{4}$ in $\frac{d y}{d x}$ and both parametric equations

Obtain $\frac{d y}{d x}=4$ and coordinates $(2,4)$
Form equation of tangent at their point
State equation of tangent in correct form $y=4 x-4$

7 (i) Substitute $x=-2$, equate to zero and obtain a correct equation in any form
Substitute $x=-1$ and equate to 12
Obtain a correct equation in any form A1
Solve a relevant pair of equations for $a$ or $b \quad$ M1
Obtain $a=2$ and $b=6$
(ii) Attempt division by $x+2$ and reach a partial quotient of $2 x^{2}-7 x \quad$ M1

Obtain quotient $2 x^{2}-7 x+3$
Obtain linear factors $2 x-1$ and $x-3$
[Condone omission of repetition that $x+2$ is a factor.)
[If linear factors $2 x-1, x-3$ obtained by remainder theorem or inspection, award $\mathrm{B} 2+\mathrm{B} 1$.]
S.C. M1A1 $\sqrt{ }$ if $a, b$ not both correct
$8 \quad$ (i) State $R=\sqrt{34}$
Use trig formula to find $\alpha$
Obtain $\alpha=30.96^{\circ}$ with no errors seen
(ii) Carry out evaluation of $\cos ^{-1}\left(\frac{ \pm 4}{R}\right)\left(\approx 46.6861^{\circ}\right.$ or $\left.313.3139^{\circ}\right)$

Obtain answer $15.7^{\circ}$
Carry out correct method for second answer
Obtain answer $282.3^{\circ}$ or $282.4^{\circ}$ and no others in the range
(iii) State $-3 \sqrt{34}(=-3 R)$

A1 M1 A1 M1 A1 B1
M1 A1 M1 A1 M1 A1 M1
[3]

B1 $\sqrt{ }$
[1]

