9709 w11 ms 13

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	13

$1 k^{3} \times\left(\frac{1}{3} x\right)^{2} \times 10$ (or correct factorials) $10 \times k^{3} \times \frac{1}{9}=30 \Rightarrow k=3$	B2 B1 [3]	B1 for $2 / 3$ terms correct cao
2 (i) $\begin{aligned} & 5[8+9 \times 4] \\ & 220\end{aligned}$ (ii) $\frac{4\left(2^{10}-1\right)}{2-1}$ 4092	M1 A1 [2] M1 A1 [2]	Use correct formula with $a=4, d=4$ Use correct formula with $a=4, r=2$ or $1 / 2$ 4090 without 4092 A0
3 (i) $\begin{align*} & 2 x^{5}+3 x^{2}=2 x \Rightarrow 2 x^{5}+3 x^{2}-2 x=0 \\ & {\left[x(2 x]^{4}+3 x^{2}-2\right)=0} \\ & 2 x^{4}+3 x^{2}-2=0 \tag{2} \end{align*}$ (ii) $\begin{aligned} & \left(x^{2}+2\right)\left(2 x^{2}-1\right)=0 \\ & \mathrm{x}= \pm 1 / \sqrt{2} \text { only } \\ & (1 / \sqrt{2}, 2 / \sqrt{2}),(-1 / \sqrt{2},-2 / \sqrt{2}) \end{aligned}$	M1 A1 M1 A1 A1 [3]	First line essential AG Factorising needed for A1 Reasonable attempt at solving a quadratic in x^{2} For a correct pair of solutions, either 2 x 's or $1 x$ and 1 y SC ($\pm 0.707, \pm 1.41$) AWRT B1
$4 \quad$ (i) $10^{2} \sin 0.8=71.7$ (ii) sector(s) $=(2) \times \frac{1}{2} \times 10^{2} \times 0.8=(2) \times 40$ Total area $=80$ (iii) $\operatorname{arc}(\mathrm{s})=(2) \times 10 \times 0.8$ $16+20=36$	M1A1 $[2]$ M1 A1 $[2]$ M1 A1 $[2]$	Completely correct method for a triangle Correct formula used for a sector Correct formula used for an arc
5 (i) $\begin{aligned} & 3 \cos ^{2} x+8 \cos x+4=0 \\ & (3 \cos x+2)(\cos x+2)=0 \\ & \cos x=-\frac{2}{3} \end{aligned}$ (ii) $\begin{aligned} & \cos (\theta+70)=-\frac{2}{3}, \\ & \theta+70=131.8 \quad \text { (or 228.2) } \\ & \theta=158.2 \end{aligned}$	M1 M1 A1 M1 A1 M1 A1	Use of $\mathrm{c}^{2}+\mathrm{s}^{2}=1$ Factorising, formula or completing the square needed AG Ignore $\cos x=-2$ also offered SC B1 if $-2 / 3$ and -2 seen

9709 w11 ms 13

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	13

6 (i) Scalar product $=15-8+3$ $\begin{aligned} & 10=\|\mathbf{O A}\|\|\mathbf{O B}\| \cos \theta \\ & \|\mathbf{O A}\|=\sqrt{26}, \quad\|\mathbf{O B}\|=\sqrt{ } 38 \end{aligned}$ Angle $B O A=71.4$ or 71.5 or 1.25 radians (ii) $\mathbf{a}+1 / 2(\mathbf{b}-\mathbf{a})$ or $\mathbf{b}+1 / 2(\mathbf{a}-\mathbf{b})$ or $1 / 2(\mathbf{a}+\mathbf{b})$ $-2 \mathbf{b}+$ their $\mathbf{c} \quad$ oe $-6 i+5 j+4 k$	M1 M1 M1 A1 [4] M1 M1 A2,1,0 [4]	Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Correct magnitude for either Linking everything correctly cao
7 (i) $\mathrm{y}=\mathrm{m}(x-2)$ oe (ii) $\begin{aligned} & x^{2}-4 x+5=\mathrm{m} x-2 \mathrm{~m} \Rightarrow x^{2}-\mathrm{x}(4+\mathrm{m})+5+2 \mathrm{~m}=0 \\ & (4+\mathrm{m})^{2}-4(5+2 \mathrm{~m})=0 \Rightarrow \mathrm{~m}^{2}-4=0 \\ & \mathrm{~m}= \pm 2 \\ & \mathrm{~m}=2 \Rightarrow x^{2}-6 \mathrm{x}+9=0 \Rightarrow x=3 \\ & \mathrm{~m}=-2 \Rightarrow x^{2}-2 x+1=0 \Rightarrow x=1 \\ & (3,2), \quad(1,2) \end{aligned}$ OR m $=2 x-4$ $y=m x-2 m, y=x^{2}-4 x+5$ (iii) $(x-2)^{2}+1,(2,1)$	A1 A1 A1 B1,B1 [2]	Accept $\mathrm{y}=\mathrm{m} x+\mathrm{c}, \quad \mathrm{c}=-2 \mathrm{~m}$ Apply $\mathrm{b}^{2}-4 \mathrm{ac}$ Substitute their m and attempt to solve for x Allow for a pair of x values or $1 x$ and 1 y . Eliminating 2 variables from 3 equations. Obtaining a quadratic in x or y. Solving their quadratic correctly. A pair of x values or $1 x$ and 1 y .. $m=2,-2$ also needed for final mark.

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	13

8 (i) $\mathrm{f}^{\prime}(3)=0 \Rightarrow 18+3 \mathrm{k}-12=0$
$\mathrm{k}=-2$
$(x-3)(x+2)=0$
$\mathrm{x}=-2,($ Allow also $=3)$
(ii) $\mathrm{f}^{\prime \prime}(x)=4 x-2$
$\mathrm{f}^{\prime \prime}(3)>0$ hence min at P
$\mathrm{f}^{\prime \prime}(-2)<0$ hence max at Q
(iii) $\mathrm{f}(x)=\frac{2}{3} x^{3}-x^{2}-12 x(+c)$
$\operatorname{Sub}(3,-10) \rightarrow-10=18-9-36+c$
$c=17$
(i) $f^{-1}(x)=\frac{1}{2} x-\frac{3}{2}$
$2 x+3=\frac{1}{2} x-\frac{3}{2} \Rightarrow x=-3$
(ii) 2 lines approximately correct, reflected in $y=x$ \& meeting at $(-3,-3)$
(iii) $\operatorname{gf}(x)=(2 x+3)^{2}-6(2 x+3)$
$4 x^{2}-9$
$4 x^{2}-9 \leq 16 \Rightarrow x^{2} \leq \frac{25}{4}$
$-\frac{5}{2} \leq x \leq 0$

M1	AG
A1	
M1	
A1	
[4]	
B1	
B1 [2]	$3 \mathrm{~min},-2 \mathrm{max}$ independent of $\mathrm{f}^{\prime \prime}(\mathrm{x})$
B2,1,0	Accept anywhere in question
M1	Dependent on c present
A1	Condone $\mathrm{y}=$, or equation $=$
[4]	
B1	
M1A1	
[3]	
B3,2,1,0	Can be implied by graph or in writing. Ignore lines extended
[3]	
M1	
A1	
M1	Solving any quadratic to do with f and g ≤ 16, to $\mathrm{x}=$
A1A1	Condone < and >
[5]	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	13

10 (i) $\int(x+1)^{\frac{1}{2}}-(x+1)$ or $\int\left(y^{2}-1\right)-(y-1)$	M1	Dealing with line as a triangle or integral with correct limits.
$\frac{2}{3}(x+1)^{\frac{3}{2}}-\frac{1}{2} x^{2}-x \text { or } \frac{1}{3} y^{2}-\frac{1}{2} y^{2}$	M1A1	Attempt at integral of curve.
$\frac{2}{3}-\left(0-\frac{1}{2}+1\right) \text { or } \frac{1}{3}-\frac{1}{2}$	DM1	Applying limits $-1 \rightarrow 0$ or $0 \rightarrow 1$ to curve
$\begin{equation*} \frac{1}{6} \tag{5} \end{equation*}$	A1	π included loses last mark.
(ii) $V_{1}=(\pi) \int\left(y^{2}-1\right)^{2}=(\pi) \int y^{4}-2 y^{2}+1$	M1	Attempt at $\int x^{2}$ dy for curve
$(\pi)\left[\frac{y^{5}}{5}-\frac{2 y^{2}}{3}+y\right]$	A1	
$(\pi)\left[\frac{1}{5}-\frac{2}{3}+1\right]$	DM1	Apply limits $0 \rightarrow 1$
$V_{1}=\frac{8}{15(\pi)} \text { or } 0.533(\pi)(\mathrm{AWRT})$	A1	
or $\quad(\pi)\left[\frac{y^{3}}{3}-y^{2}+y\right]$	M1	Or $\frac{1}{3} \times \pi\left(\times 1^{2} \times 1\right)$
$V_{2}=\frac{1}{3} \pi$	A1	Vol of cone or attempt to $\int x^{2} d y$ for
$\text { Volume }=\frac{8}{15} \pi \frac{1}{-3} \pi=\frac{1}{5} \pi(\text { or } 0.628)$	A1 [7]	line
OR $\left(\mathrm{y}^{4}-2 \mathrm{y}^{2}+1\right)-\left(\mathrm{y}^{2}-2 \mathrm{y}+1\right)$	M1	Attempt to $\int x^{2} d y$
$(\pi) \int y^{4}-3 y^{2}+2 y$	M1	Attempt to $\int\left(\mathrm{x}_{1}{ }^{2}-\mathrm{x}_{2}{ }^{2}\right)$
$(\pi)\left[y^{\uparrow} 5 / 5-y^{\uparrow} 3+y^{\uparrow} 2\right]$	A1,A1,A1	
$(\pi)\left[\frac{1}{5}-1+1\right]$	DM1	Apply limits $0 \rightarrow 1$ dependent on first M1
$\frac{1}{5} \pi$	A1	

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	13

$\left.\int_{-1}^{0} x+1-\int_{-1}^{0}(x+1)\right)^{2}$	M1	SC MR integrating about x axis
$\left[\frac{x^{2}}{2}+x\right]-\left[\frac{x+1^{3}}{3}\right]$	M1	
$\mathrm{SC}=\left[(0)-\left(\frac{1}{2}-1\right)\right]-\left[\frac{1}{3}-0\right]$	A1	Use of $-1,0$ as limits
$\frac{1}{2}-\frac{1}{3}=\frac{1}{6} \pi \quad(0.524)$		

