						<u>9709_w11_ms_13</u>			
	Page 4 Mark Scheme: Teachers' version					Syllabus	Paper		
		GCE AS/A LEVEL -	- Uctober/Novem	ber 2	011	9709	13		
1	$k^3 \times \left(\frac{1}{3}x\right)$	$)^2 \times 10$ (or correct factorials)	B2		B1 for	2/3 terms correct			
	$10 \times k^3 \times \frac{1}{9} = 30 \Longrightarrow k = 3$			[3]	cao				
2	(i) 5[8 220	(+ 9 × 4]	M1 A1	[2]	Use correct formula with $a=4$, $d=4$ Use correct formula with $a=4$, $r=2$ or $\frac{1}{2}$ 4090 without 4092 A0				
	(ii) $\frac{4(2)}{2}$	$\frac{2^{10}-1}{2-1}$	M1	[2]					
	409	92	A1	[2]					
3	(i) $2x^5$	$+ 3x2 = 2x \implies 2x5 + 3x2 - 2x = 0$ 2x ^{1⁴} + 3x ² - 2) = 0	M1		First li	First line essential			
	$2x^4$	$+3x^2-2=0$	A1	[2]	AG F	actorising needed	for A1		
	(ii) (<i>x</i> ²	$(+2)(2x^2-1)=0$	M1		Reason quadra	olving a			
	x =	$=\pm \frac{1}{\sqrt{2}}$ only	A1 A1	[3]	For a correct pair of solutions, either x 's or $1 x$ and $1 y$				
		$\sqrt[1]{\sqrt{2}}, \sqrt[2]{\sqrt{2}}, \left(\frac{-1}{\sqrt{2}}, -\frac{2}{\sqrt{2}}\right)$			SC (±(J.707, ±1.41) AW	KI BI		
4	(i) 10 ²	sin 0.8 = 71.7	M1A1	[2]	Compl triangl	letely correct met e	hod for a		
	(ii) sec Tot	$tor(s) = (2) \times \frac{1}{2} \times 10^2 \times 0.8 = (2)$ tal area = 80) × 40 M1		Correc	t formula used fo	r a sector		
	(iii) arc	$(s) = (2) \times 10 \times 0.8$		[2]					
	16+	+20 = 36	A1	[2]	Correc	et formula used fo	r an arc		
5	(i) 3co (3co	$\frac{1}{\cos^2 x + 8\cos x + 4} = 0$ $\cos x + 2)(\cos x + 2) = 0$	M1 M1		Use of Factor square	$c^{2}c^{2} + s^{2} = 1$ ising, formula or needed	completing the		
	cos	$x = -\frac{2}{3}$	A1	[3]	AG Ig SC B1	nore $\cos x = -2$ als if $-2/3$ and -2 se	so offered en		
	(ii) cos	$\theta(\theta + 70) = -\frac{2}{3}, \qquad \theta = 61.$.8 M1 A1						
	$\theta = \theta$	10 = 131.8 (or 228.2) 158.2	M1 A1						
				[4]					

				<u>9709_w11_ms_13</u>			
Page 5		ge 5	Mark Scheme: Teachers' vers	Syllabus Paper			
	GCE AS/A LEVEL – October/Novem			1ber 201	1 9709 13		
6	(i) (ii)	Scalar pro $10 = \mathbf{OA} $ $ \mathbf{OA} = \sqrt{2}$ Angle <i>BO</i> or 1.25 rat $\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ $-2\mathbf{b} + theta$ $-6\mathbf{i} + 5\mathbf{j} + \frac{1}{2}\mathbf{b}$	bduct = $15-8+3$ OB cos θ 16, OB = $\sqrt{38}$ 2A = 71.4 or 71.5 dians 0 or $\mathbf{b}+\frac{1}{2}(\mathbf{a}-\mathbf{b})$ or $\frac{1}{2}(\mathbf{a}+\mathbf{b})$ <i>ir</i> \mathbf{c} oe 4 k	M1 M1 A1 [4] M1 M1 A2,1,0 [4]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Correct magnitude for either Linking everything correctly cao		
7	(i)	y = m(x -	2) oe	B1 [1]	Accept $y = mx + c$, $c = -2m$		
	(ii)	$x^{2} - 4x + 3$ $(4 + m)^{2} - m = \pm 2$ $m = 2 \implies 3$ $m = -2 = (3, 2), (3)$	$5 = mx - 2m \Rightarrow x^{2} - x(4 + m) + 5 + 2m = 0$ - 4(5 + 2m) = 0 \Rightarrow m ² - 4 = 0 $x^{2} - 6x + 9 = 0 \Rightarrow x = 3$ $\Rightarrow x^{2} - 2x + 1 = 0 \Rightarrow x = 1$ 1, 2)	M1 DM1 A1 DM1 A1 A1 A1 [6]	Apply $b^2 - 4ac$ Substitute their m and attempt to solve for x Allow for a pair of x values or 1 x and 1 y.		
	OR	m = 2x - x $y = mx - x$	4 2m, y = $x^2 - 4x + 5$	M1 M1	Eliminating 2 variables from 3 equations. Obtaining a quadratic in x or y.		
				M1 A1 A1 A1 B1,B1	Solving their quadratic correctly. A pair of x values or 1 <i>x</i> and 1 y m=2,-2 also needed for final mark.		
	(iii)	$(x-2)^2 +$	1, (2, 1)				

		970	9 w11 ms 13
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	13

-					
8	(i)	$f'(3) = 0 \implies 18 + 3k - 12 = 0$	M1		
		k = -2	A1		AG
		(x-3)(x+2) = 0	M1		
		x = -2 (Allow also = 3)	A1		
		1 2; (1110) ulbo 2)		[4]	
	(::)	f''(x) = 4x		ניו	
	(11)	f(x) = 4x - 2	D1		
		f''(3) > 0 hence min at P	BI		
		f''(-2) < 0 hence max at Q			
			B1		3 min, -2 max independent of f''(x)
				[2]	
		$x > \frac{2}{3} + \frac{3}{2} + \frac{10}{3} + \frac{10}{3$	DO 1 0		A scort our with our in succession
	(111)	$f(x) = \frac{1}{3}x^{2} - x^{2} - 12x \ (+c)$	B2,1,0		Accept anywhere in question
		Sub $(3, -10) \rightarrow -10 = 18 - 9 - 36 + c$	M1		Dependent on c present
		c = 17	A1		Condone $y = 0$, or equation =
				[4]	······································
				[,]	
		1 3	B 1		
9	(i)	$f^{-1}(x) = \frac{1}{x} - \frac{3}{x}$	DI		
			M1A1		
		2 2 1 3 2		[3]	
		$2x+3=-x\Rightarrow x=-3$		[-]	
		Σ Σ			
	<i></i>		D2 2 1 0		Can be implied by graph or in writing
	(11)	2 lines approximately correct,	B3,2,1,0		Lan one lines extended
		reflected in $y=x$ & meeting at $(-3, -3)$			Ignore lines extended
				[3]	
	(iii)	$gf(x) = (2x+3)^2 - 6(2x+3)$	M1		
	()	$4x^2 - 9$	1VI 1 A 1		
		25	AI		
		$4x^2 - 9 \le 16 \implies x^2 \le \frac{23}{2}$	M1		Solving any quadratic to do with f and g
		4			≤ 16 , to x =
		5	A 1 A 1		Condone < and >
		$-\frac{1}{2} \ge x \le 0$		[5]	
		2		[2]	

Page 7			Mark Sahama: Tasah	ore' vorsion		9'/0	9_wll_ms_la	
raye i		ge /	CCE AS/A EVEL October/Nevember 2011				Paper 12	
			GCE AS/A LEVEL - OCIODE	er/november	2011	9709	13	
10	(i)	$\int (x+1)^{\frac{1}{2}}$	$-(x+1)$ or $\int (y^2 - 1) - (y-1)$	M1	Dealing with line as a triangle or integr with correct limits.			
		$\frac{2}{3}(x+1)^{\frac{3}{2}}$	$-\frac{1}{2}x^2 - x$ or $\frac{1}{3}y^2 - \frac{1}{2}y^2$	M1A1	Attempt	t at integral of cur	ve.	
		$\frac{2}{3} - \left(0 - \frac{1}{2}\right)$	$\left(\frac{1}{2}+1\right)$ or $\frac{1}{3}-\frac{1}{2}$	DM1	Applying limits $-1 \rightarrow 0 \text{ or } 0 \rightarrow 1$ to curve			
		$\frac{1}{6}$		A1 [5]	π included loses last mark.			
	(ii)	$V_1 = (\pi) \int$	$(y^2 - 1)^2 = (\pi) \int y^4 - 2y^2 + 1$	M1	Attempt	t at $\int x^2 dy$ for cu	irve	
		$(\pi)\left[\frac{y^5}{5}-$	$\frac{2y^2}{3} + y \bigg]$	A1				
		$(\pi)\left[\frac{1}{5}-\frac{1}{5}\right]$	$\left[\frac{2}{3}+1\right]$	DM1	Apply li	imits $0 \rightarrow 1$		
		$V_1 = \frac{8}{15(\pi)}$	$\frac{1}{10}$ or 0.533(π) (AWRT)	A1				
		$\int V^3$	2.1	MI	Or^{1}	-(~ 12 ~ 1)		
	or	$(\pi)\left[\frac{y}{3}-y\right]$	$\left[2^{2}+y\right]$	MI	$\operatorname{Or} \frac{1}{3} \times \pi$	$t(\times 1^{-} \times 1)$		
		$V_2 = \frac{1}{3}\pi$		A1	Vol of c	cone or attempt to	$\int x^2 dy$ for	
		Volume =	$= \frac{8}{15}\pi \ \frac{1}{-3}\pi = \frac{1}{5}\pi \text{ (or 0.628)}$	A1 [7]	line		5	
	OR	$(y^4 - 2y^2 -$	$(+1) - (y^2 - 2y + 1)$	M1	Attempt	t to $\int x^2 dy$		
		$(\pi)\int y^4 -$	$3y^2 + 2y$	M1	Attempt	$t to \int (x_1^2 - x_2^2)$		
		$(\pi) \left[y^{\uparrow} 5 \right]$	$\left(5-y^{\uparrow}3+y^{\uparrow}2\right]$	A1,A1,A1	ſ	- 、 - 2 /		
		$(\pi)\left[\frac{1}{5}-1\right]$	+1]	DM1	Apply li	imits $0 \rightarrow 1$ depend	ent on first M1	
		$\frac{1}{5}\pi$		A1				

					970	9 wll ms 13	
	Page 8 Mark Scheme: Teachers' version			Syllabus	Paper		
		GCE AS/A LEVEL – Octobe	LEVEL – October/November 2011			13	
	$\int_{-1}^{0} x + 1 - \int_{-1}^{0} (x + 1) \left[\frac{x^2}{2} + x \right] - \left[\frac{x}{2} + x \right] = \left[\frac$	M1	SC MR	integrating abou	t x axis		
SC	$= \left[(0) - \left(\frac{1}{2} - 1\right) + \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\pi \right]$	$) \left] - \left[\frac{1}{3} - 0 \right] \\ 0.524)$	M1 A1	Use of –	f –1,0 as limits		