Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	12

1	(i) $(2-y)^{5}=32-80 y+80 y^{2}$	B2,1 [2] M1 M1 A1 [3]	-1 for each error. Accept 2^{5}. Allow for $y=2 x+x^{2}$ Needs to consider exactly 2 terms. CO - accept $400 x^{2}$, accept full expansion if $400 x^{2}$ is part of it.
2	$\mathrm{f}: x \mapsto 3 x+a, \mathrm{~g}: x \mapsto b-2 x$ (i) $\begin{aligned} & \mathrm{f}^{2}(x)=3(3 x+a)+a \\ & \mathrm{f}^{2}(2)=18+4 a=10 \rightarrow a=-2 \\ & \mathrm{~g}^{-1}(x)=\frac{b-x}{2} \rightarrow \frac{b-2}{2}=3 \quad b=8 \\ & \text { or } \mathrm{g}(3)=2 \rightarrow b-6=2 \quad b=8 \end{aligned}$ $\text { (ii) } \begin{aligned} & \operatorname{fg}(x)=3(b-2 x)+a \\ & =22-6 x \end{aligned}$		Must be correct - unsimplified ok co Correct method leading to a value for b co Must be fg not gf. $\sqrt{ }$ on a and $b(3 b+a-6 x)$ must be two term answer.
3		$\begin{aligned} & \text { M1 } \\ & \\ & \text { DM1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { [3] } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ $\ldots=0$ co co (accept negative) For modulus Scales by $\times 28 \div$ modulus. Co - could leave as " $4 \times \ldots$...
4	(i) $\begin{aligned} & y^{2}+2 x=13,2 y+x=8 \\ & \rightarrow y^{2}-4 y+3=0, x^{2}-8 x+12=0 \\ & \rightarrow(2,3) \text { and }(6,1) \end{aligned}$ (ii) Removes $x \rightarrow y^{2}+2(k-2 y)=13$ Uses $b^{2}-4 a c$ on "quadratic $=0$) $\rightarrow \quad k=81 / 2$ or $\frac{\mathrm{dy}}{\mathrm{dx}}=-1 / 2=\frac{-1}{y} \rightarrow y=2, x=41 / 2, k=8^{1 / 2}$	M1 A1 DM1 A1 [4] M1 DM1 A1 [3]	Complete elimination of x or y co (allow multiples) - needs 3 terms Solution of quadratic $=0$ Needs all 4 coordinates. Complete elimination of x or y. Use of discriminant $=0,<0$ or >0 Co (M1 equating m of line and curve M1 x to $y \mathrm{~A} 1$ for k)

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	12

5 (i) (ii) Evidence of $\sin 30=\cos 60=0.5$ Other root is 150° (iii) $\begin{aligned} & 0 \leq x<30 \text { and } 150<x \leq 180 \\ & (\mathrm{x}<30 \text { or } \mathrm{x}>150 \text { ok }) \end{aligned}$		$\begin{aligned} & y=\sin x \quad(0,0) .(\pi, 0)+\text { curve } \\ & y=\cos 2 x \quad \text { One full cycle. } \\ & y=\cos 2 x \text { starts and finishes at }(0,1) \text { and } \\ & \text { oscillates between }-1 \text { and }+1 . \\ & \text { Do not penalise graphs from } 0 \text { to } 360 . \\ & \text { co } \\ & \text { co } \\ & \text { Condone }<\text { or } \leq \text { throughout } \end{aligned}$
6 (i) D to $A X=6 \sin \frac{\pi}{3}=6 \sqrt{ } 3 \div 2$ E to $A X=10 \sin \theta$ Equate these $\rightarrow \theta=\sin ^{-1} \frac{3 \sqrt{3}}{10}$. (ii) $\operatorname{Arc} D X=6.1 / 3 \pi=2 \pi$ Arc $E X=10 \times 0.5464=5.464$ Horizontal steps $=6 \cos ^{1} / 3 \pi$ and $10 \cos \theta$ $D E=10+6-6 \cos ^{1} 3 \pi-10 \cos \theta$ Perimeter $=\operatorname{arc} D X+\operatorname{arc} B X+D E$ $\rightarrow 16.20$	M1 M1 M1 A1 [5]	co Needs $-\sqrt{ } 3 \div 2$ not just $3 \sqrt{ } 3$. co Correct method. ag. Use of decimals loses this B mark. co Use of $s=r \theta$ radians. Attempt at both steps needed Full method for $D E$. Co - must be exactly 16.20 , not more or less places.
$7 \frac{\mathrm{dy}}{\mathrm{dx}}=5-\frac{8}{x^{2}}$, Normal $3 y+x=17$ (i) Gradient of line $=-1 / 3$ $\frac{\mathrm{dy}}{\mathrm{dx}}=3 \rightarrow x=2, y=5$ (ii) $y=5 x+8 x^{-1}(+c)$ Uses $(2,5) \rightarrow c=-9$	B1 M1 DM1 A1 [4] B1 B1 M1 A1 [4]	co Use of $m_{1} m_{2}=-1$ DM1 solution. A1 co. co.co. doesn't need $+c$. Use of $+c$ following integration. co.

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	12

$8 y=\sqrt{8 x-x^{2}}$ (i) $\begin{aligned} & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(8 x-x^{2}\right)^{-\frac{1}{2}} \times(8-2 x) \\ & =0 \text { when } x=4 \\ & \rightarrow(4,4) \end{aligned}$ (ii) $\begin{aligned} & y=0 \text { when } x=0 \text { or } 8 \\ & \mathrm{Vol}=\pi \int\left(8 x-x^{2}\right) \mathrm{d} x \\ & =\pi\left[4 x^{2}-\frac{x^{3}}{3}\right] \\ & \rightarrow \frac{256 \pi}{3} \end{aligned}$	B1 B1 M1 A1 [4] B1 B2,1 B1 [4]	B1 for everything but $\times(8-2 \mathrm{x})$ B1 for $\times(8-2 x)$, even if B0 Sets to $0+$ attempt at solution. Co - A0 if fortuitous because of B0 earlier. Anywhere -1 for each error (not including π) co
9 (i) Gradient of $A C=1 / 2$ Gradient of $B D=-2$ Eqn of $B D$ is $y-6=-2(x-3)$ Eqn of $A C$ is $y+1=\frac{1}{2}(x+1)$ Sim eqns $\rightarrow M(5,2)$ Vector move - or midpoint back $\rightarrow D(7,-2)$ (ii) Ratio of $A M: M C=\sqrt{ } 45: \sqrt{ } 20$ or Vector step $\rightarrow 3: 2$	B1 M1 M1 M1 A1 M1 A1V [7] M1 A1 [2]	co Use of $m_{1} m_{2}=-1$ with $A C$ Correct formula for straight line Solution. co Correct method. $\sqrt{ }$ on M. Correct distance formula. Looks at the two x or y steps. Must be numerical, 1.5 ok, not as roots
10 (a) $a=-15, \quad n=25$ (i) Use of $S_{n} \rightarrow d=3$. (ii) Last term $=a+24 d$ $\begin{aligned} & \rightarrow 57 \\ & (\text { or } 525=1 / 2 \times 25 \times(-15+l) \rightarrow l=57) \end{aligned}$ (iii) Positive terms are $3,6, \ldots . .57$ Either $a=0$ or 3, $n=19$ or 20 Use of S_{19} or S_{20} $\rightarrow 570$ (b) $r=1.05$ (i) $11^{\text {th }}$ term $=a r^{10}=\$ 6516$ or $\$ 6520$ (ii) $\begin{aligned} & S_{11}=\frac{4000 \times\left(1.05^{11}-1\right)}{.05} \\ & =\$ 56800 \text { or }(56827)\end{aligned}$	M1 A1 [2] M1 A1 $\sqrt{ }$ [2] M1 A1 [2] B1 B1 [2] M1 A1 [2]	Must be correct formula. co Must be $a+24 d$ \checkmark for his d. Correct use of formula for S_{n}. co In either part (i) or (ii). co Correct sum formula with their r. co

