		970	9 w11 ms 12
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	12

1	(i) $(2-y)^5 = 32 - 80y + 80y^2$	B2,1	-1 for each error. Accept 2^5 .
	(ii) $(2 - (2x - x^2))^5$ "y" = " $2x - x^2$ " $\rightarrow 80 + 320 = 400$	[2] M1 M1 A1 [3]	Allow for $y = 2x + x^2$ Needs to consider exactly 2 terms. CO – accept 400 x^2 , accept full expansion if 400 x^2 is part of it.
2	f: $x \mapsto 3x + a$, g: $x \mapsto b - 2x$		
	(i) $f^2(x) = 3(3x + a) + a$ $f^2(2) = 18 + 4a = 10 \implies a = -2$	B1 B1	Must be correct – unsimplified ok co
	$g^{-1}(x) = \frac{b-x}{2} \rightarrow \frac{b-2}{2} = 3 b=8$ or $g(3) = 2 \rightarrow b-6 = 2 \qquad b=8$	M1 A1 [4]	Correct method leading to a value for <i>b</i> co
	(ii) $fg(x) = 3(b-2x) + a$ = 22 - 6x	M1 A1√ [2]	Must be fg not gf. on <i>a</i> and <i>b</i> (3 <i>b</i> + <i>a</i> - 6 <i>x</i>) must be two term answer.
3	$\overrightarrow{OA} = 5\mathbf{i} + \mathbf{j} + 2\mathbf{k}, \overrightarrow{OB} = 2\mathbf{i} + 7\mathbf{j} + p\mathbf{k}$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$
	(i) \overrightarrow{OA} . $\overrightarrow{OB} = 10 + 7 + 2p$ = 0 $\rightarrow p = -8\frac{1}{2}$	DM1 A1 [3]	=0 co
	(ii) $AB = -3i + 6j + 2k$ Modulus = $\sqrt{(9+36+4)}$ Magnitude 28 \rightarrow 28 × unit vector $\rightarrow -12i + 24j + 8k$.	B1 M1 M1 A1 [4]	co (accept negative) For modulus Scales by ×28 ÷ modulus. Co – could leave as "4 × …".
4	(i) $y^2 + 2x = 13$, $2y + x = 8$ $\rightarrow y^2 - 4y + 3 = 0$, $x^2 - 8x + 12 = 0$ $\rightarrow (2, 3)$ and (6, 1)	M1 A1 DM1 A1 [4]	Complete elimination of x or y co (allow multiples) – needs 3 terms Solution of quadratic = 0 Needs all 4 coordinates.
	(ii) Removes $x \to y^2 + 2(k - 2y) = 13$ Uses $b^2 - 4ac$ on "quadratic = 0) $\to k = 8\frac{1}{2}$ or $\frac{dy}{1} = -\frac{1}{2} = \frac{-1}{2} \to y = 2, x = 4\frac{1}{2}, k = 8\frac{1}{2}$	M1 DM1 A1 [3]	Complete elimination of x or y. Use of discriminant =0, <0 or >0 Co (M1 equating m of line and curve M1 x to y A1 for k)
	ax y		

	9709 w11 ms 1					
	Page 5 Mark Scheme: Teachers' version			Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2011			ber 2011	9709	12
5	(i) ++ 	X Dei	B1 B1 B1 [3]	$y = \sin x (y = \cos 2x (y = \sin 2x \ (y = \sin$	(0,0). $(\pi,0)$ + curve One full cycle. starts and finishes etween -1 and +1 alise graphs from (at (0, 1) and 0 to 360.
	(ii) Evidence of s Other root is	in $30 = \cos 60 = 0.5$ 150°	B1 B1 [2]	со со		
	(iii) $0 \le x < 30$ an (x < 30 or x >	d $150 < x \le 180$ 150 ok)	B1 B1√ [2]	Condone <	or \leq throughout	
6	(i) D to $AX = 6$ s E to $AX = 10$ s Equate these	$\sin \frac{\pi}{3} = 6\sqrt{3} \div 2$ in θ $\rightarrow \theta = \sin^{-1} \frac{3\sqrt{3}}{10}.$	B1 B1 B1 [3]	co Needs – co Correct me Use of deci	$-\sqrt{3}$ ÷2 not just 3√3 thod. ag. mals loses this B 1	nark.
	(ii) Arc $DX = 6.\frac{1}{2}$ Arc $EX = 10 \times$ Horizontal ste DE = 10 + 6 - Perimeter = an $\rightarrow 16.20$	$\pi = 2\pi$ 0.5464 = 5.464 $ps = 6\cos^{1}/_{3}\pi \text{ and } 10\cos\theta$ $- 6\cos^{1}/_{3}\pi - 10\cos\theta$ rc DX + arc BX + DE	B1 M1 M1 M1 A1 [5]	co Use of <i>s=rt</i> Attempt at Full method Co – must l less places.	θ radians. both steps needed d for <i>DE</i> . be exactly 16.20, r	ot more or
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5 - \frac{8}{x^2}, \text{ Not}$	ormal $3y + x = 17$				
	(i) Gradient of lin $\frac{dy}{dx} = 3 \rightarrow 0$	$ne = -\frac{1}{3}$ x = 2, y = 5	B1 M1 DM1 A1	co Use of m_1m_2 DM1 solut	$a_2 = -1$ tion. A1 co.	
	(ii) $y = 5x + 8x^{-1}$ Uses (2, 5) -	$c^{-1}(+c)$ $\rightarrow c = -9$	[4] B1 B1 M1 A1 [4]	co.co. does Use of + <i>c</i> f	n't need + <i>c</i> . ollowing integration	on. co.

		9709_w11_ms_1					
	Page 6 Mark Scheme: Teachers' version			Syllabus Paper			
		GCE AS/A LEVEL – October/November 20		2011 9709 12			
8	<i>y</i> =	$=\sqrt{8x-x^2}$					
	(i)	$\frac{dy}{dx} = \frac{1}{2} (8x - x^2)^{-\frac{1}{2}} \times (8 - 2x)$ = 0 when x = 4. \rightarrow (4, 4)	B1 B1 M1 A1 [4]	B1 for everything but $\times(8-2x)$ B1 for $\times(8-2x)$, even if B0 Sets to 0 + attempt at solution. Co - A0 if fortuitous because of B0 earlier			
	(ii)	y = 0 when $x = 0$ or 8 Vol = $\pi \int (8x - x^2) dx$	B1	Anywhere			
		$= \pi \left[4x^2 - \frac{x^3}{3} \right]$	B2,1	-1 for each error (not including π)			
		$\rightarrow \frac{256\pi}{3}$	B1 [4]	со			
9	(i)	Gradient of $AC = \frac{1}{2}$ Gradient of $BD = -2$	B1 M1	co Use of $m_1m_2 = -1$ with AC			
		Eqn of <i>BD</i> is $y-6 = -2(x-3)$ Eqn of <i>AC</i> is $y+1 = \frac{1}{2}(x+1)$ Sim eqns $\rightarrow M(5, 2)$	M1 M1 A1	Solution.			
		Vector move – or midpoint back $\rightarrow D(7, -2)$	M1 A1√ [7]	Correct method. $$ on <i>M</i> .			
	(ii)	Ratio of $AM: MC = \sqrt{45}: \sqrt{20}$ or Vector step $\rightarrow 3: 2$	M1 A1 [2]	Correct distance formula. Looks at the two x or y steps. Must be numerical, 1.5 ok, not as roots			
10	(a)	a = -15, n = 25					
		(i) Use of $S_n \rightarrow d=3$.	M1 A1 [2]	Must be correct formula. co			
		(ii) Last term = $a + 24d$ $\rightarrow 57$ (or $525 = \frac{1}{2} \times 25 \times (-15 + l) - 100$	$\rightarrow l = 57) \qquad \qquad$	Must be $a + 24d$ for his d.			
		(iii) Positive terms are 3,6,57 Either $a = 0$ or 3, $n = 19$ or 20 Use of S_{19} or S_{20}	M1	Correct use of formula for S_n .			
		$\rightarrow 570$	A1 [2]	со			
	(b)	<i>r</i> = 1.05	B1	In either part (i) or (ii).			
		(i) $11^{\text{th}} \text{ term} = ar^{10} = \$6516 \text{ or } \$$	6520 B1 [2]	со			
		(ii) $S_{11} = \frac{4000 \times (1.05^{11} - 1)}{.05}$ = \$56800 or (56827)	M1 A1 [2]	Correct sum formula with their <i>r</i> . co			