Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	11

1	$\begin{aligned} & 6 \mathrm{C} 4 \times[2(x)]^{4} \times\left[\frac{1}{\left(x^{2}\right)}\right]^{2} \\ & 240 \end{aligned}$	B2 B1	[3]	B1 for $2 / 3$ terms correct Identified as answer. Allow $240 x^{0}$
2	$\begin{aligned} & \frac{\delta y}{\delta x}=9 x^{2}-12 x+4 \\ & (3 x-2)^{2} \geq 0 \end{aligned}$	M1A1 A1	[3]	
3	(i) Correct cosine curve for at least 1 oscillation Exactly 2 complete oscillations in $[0,2 \pi]$ Line $y=\frac{1}{2}$ correct	B1 B1 B1	[3]	Range $-1 \rightarrow 1$. Ignore labels on θ axis
	(ii) 4	B1 $\sqrt{ }$	[1]	Ft their graph. Accept $30^{\circ}, 150^{\circ}$, $210^{\circ}, 330^{\circ}$
	(iii) 20	B1 $\sqrt{ }$	[1]	Or $5 \times$ their part (ii)
4	(i) 3	B1	[1]	
	(ii) $f(x)=x^{2}-6 x(+c)$ Subst (3,-4) $c=5 \rightarrow f(x)=x^{2}-6 x+5$	$\begin{aligned} & \text { M1A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	Dependent on c present cao
5	(i) $\operatorname{Arc} A B=r \theta$ $\begin{aligned} & O C=r \sin \theta \text { or } B C=r \cos \theta \\ & r(1+\theta+\cos \theta+\sin \theta) \\ & \text { correctly derived } \end{aligned}$	M1 M1 A1	[3]	oe eg $B C=r \sin \frac{\theta}{\tan \theta}$ etc $O C \& B C$ reversed loses M1A1
	(ii) $\begin{aligned} & \text { Sector } O A B=\frac{1}{2} \times 10^{2} \times \frac{\pi}{5}(=31.42) \\ & \triangle O C B=\frac{1}{2\left(10 \cos \frac{\pi}{5}\right)\left(10 \sin \frac{\pi}{5}\right)} \\ & (=23.78) \\ & \text { Total area }=55.2 \end{aligned}$	M1 M1 A1	[3]	oe Δ in terms of π and 10 Allow $O C$ \& $B C$ reversed (ie $\max 4 / 6$)
6	(a) $a+5 d=23$ $5(2 a+9 d)=200$ Attempt solution, expect $d=6 \quad a=-7$ 29	B1 B1 M1 A1	[4]	Solution of 2 linear equations

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	11

	$\text { (b) } \begin{aligned} & \frac{1}{1-r}(=) \frac{4}{1-\frac{1}{4} r} \\ & r=\frac{4}{5} \text { oe } S=5 \end{aligned}$	M1 A1A1	[3]	Use of S_{∞} formula twice
7	(i) $y=\frac{1}{6(48-8 x)}$ oe	B1	[1]	
	$\text { (ii) } \begin{aligned} A & =4 x y+2 x y \text { or } 3 x y+3 x y=6 x y \\ A & =x(48-8 x)=48 x-8 x^{2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	[2]	AG
	$\text { (iii) } \begin{aligned} & \frac{\delta A}{\delta x}=48-16 x \\ & A=72 \text { cao } \\ & \frac{\delta^{2} A}{\delta x^{2}}=-16 \quad(<0) \Rightarrow \text { Maximum } \end{aligned}$	B1 M1A1 B1	[4]	Attempt to solve derivative $=0$ Expect $x=3$ www Accept other complete methods
8	(i) $(4 i+7 j-p k) \cdot(8 i-j-p k)=25+p^{2}$	M1A1	[2]	$\begin{aligned} & x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\ & \left(\text { Not } 25+(-p)^{2}\right) \end{aligned}$
	(ii) $25+p^{2}=0 \Rightarrow$ no real solutions	B1V	[1]	Ft provided equation has no real solutions
	(iii) $\cos 60=\frac{O A \cdot O B}{\|O A\|\|O B\|}$ used $\begin{aligned} & \|O A\|=\sqrt{65+p^{2}} \text { or }\|O B\|=\sqrt{65+p^{2}} \\ & \frac{25+p^{2}}{65+p^{2}}=\frac{1}{2} \text { or } \frac{\text { his scalar }(i)}{65+p^{2}}=\frac{1}{2} \\ & p= \pm 3.87 \text { or } \pm \sqrt{15} \end{aligned}$	M1 M1 A1 $\sqrt{ }$ A1	[4]	OA.OB must be scalar Not $\sqrt{65-p^{2}}$ unless follows $\sqrt{65+(-p)^{2}}$ Scalar product $=25+p^{2}$ can score here if not scored in part (i)
9	$\text { (i) } \begin{aligned} & x^{2}+3 x+4=2 x+6 \Rightarrow x^{2}+x-2(=0) \\ &(x-1)(x+2)=0 \rightarrow(1,8),(-2,2) \\ & A B=\sqrt{3^{2}+6^{2}}=6.71 \text { or } \sqrt{45} \text { or } 3 \sqrt{5} \\ &\left(-\frac{1}{2}, 5\right) \end{aligned}$	M1 DM1A1 B1 B1 $\sqrt{ }$	[5]	3-term simplification DM1 for attempted solution for x cao ($\sqrt{45}$ from wrong points scores B0) Ft their coordinates

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9709	11

	$\text { (ii) } \begin{aligned} & x^{2}+(3-k) x+2 k-6(=0) \\ &(3-k)^{2}-4(2 k-6)=0 \\ & \\ &(3-k)(11-k)=0 \\ & k=3 \text { or } 11 \end{aligned}$	M1 DM1 DM1 A1	[4]	Simplified to 3-term quadratic Apply $b^{2}-4 a c=0$ as function of k only Attempt factorisation or use formula Both correct NB Alternative methods for (ii) possible
10	(i) $\mathrm{B}=(0,1) \mathrm{C}=(4,3)$	B1, B1	[2]	If B0B0 then SCB 1 for both $y=1 \&$ $x=4$
	(ii) $\frac{\delta y}{\delta x}=\frac{1}{2} \times 2(1+2 x)^{-\frac{1}{2}}$ Grad. of normal $=-3$ $y-3=-3(x-4) \text { or } y=-3 x+15 \text { oe }$	M1A1 B1 B1 $\sqrt{ }$	[4]	$-\frac{1}{2}$ required \& at least one of $\frac{1}{2} \times 2$ for M1 Ft only from their C
	$\text { (iii) } \begin{aligned} & y^{2}=1+2 x \Rightarrow x=\frac{1}{2\left(y^{2}-1\right)} \\ & (\pi) \times \frac{1}{4} \times \int\left(y^{4}-2 y^{2}+1\right) \delta y \\ & (\pi) \times \frac{1}{4}\left[\frac{y^{5}}{5}-\frac{2 y^{3}}{3}+y\right] \\ & (\pi) \times \frac{1}{4}\left[\frac{1}{5}-\frac{2}{3}+1\right] \\ & \frac{2}{15} \pi \end{aligned}$	B1 M1 A1 DM1 A1	[5]	$\int x^{2} \delta y$, square $\frac{1}{2}\left(y^{2}-1\right) \&$ attempt int ${ }^{n}$ Apply limits $0 \rightarrow$ their 1 (from their B) cao SCB1 for $\int y^{2} \delta x \rightarrow \frac{\pi}{4}$ (scores 1/5)
11	(i) $2(x-2)^{2}+2$	$\begin{aligned} & \text { B 1, B1, } \\ & \text { B1 } \end{aligned}$	[3]	For 2, -2, 2
	(ii) $2 \leq f(x) \leq 10 \quad$ oe	B1	[1]	Allow < etc. Ignore notation
	(iii) $2 \leq x \leq 10$	B1 $\sqrt{ }$	[1]	Ft from part (ii). Ignore notation
	(iv) $f(x): \approx$ half parabola from $(0,10)$ to $(2,2)$ $g(x)$: line through 0 at $\approx 45^{\circ}$ $f^{-1}(x)$: reflection of their $f(x)$ in $g(x)$ Everything totally correct	B1 B1 B1 $\sqrt{ }$ B1	[4]	Or from int with y axis to int with their $y=x$

(v) $(x-2)^{2}=\frac{1}{2}(y-2)$
$x=2 \pm \sqrt{\frac{1}{2}(y-2)}$
$f^{-1}(x)=2-\sqrt{\frac{1}{2}(x-2)}$

M1		Allow $+\sqrt{ }$ or $-\sqrt{ }$. Dep on final ans as f^{n} of x
M1		
A1	$[3]$	cao

