9709 w10 ms 73

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	73

1	Normal 31 for mean $\sqrt{31}$ or 5.57 for sd	$\begin{array}{\|l} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~B} 1 \\ \hline \end{array}$	[3]	For mean Must be sd
2	(i) Only the more committed or less busy etc Only readers of that particular issue	B1 B1	[2]	Any sensible category of readers who will not respond implied
	(ii) Three randomly generated 4-digit numbers given 49753952 (0)386	B1 B1dep		Starting with 4975 Accept 497502395203 and 497552036088 SC alternative consistent methods producing a set of 3 randomly generated 4 digit numbers can score B1 for the first number and B1dep for all three numbers, all <=7302
3	$\text { (i) } \begin{aligned} & 29.6 \pm z \times^{1.0} / /_{65} \\ & 29.6 \pm 2.576 \times 1.0 / \sqrt{65} \\ & (29.6 \pm 0.3195) \\ & (29.3,29.9)(3 \mathrm{sfs}) \end{aligned}$	M1 A1	[3]	Allow any value of z For 2.576 seen Allow any brackets or none, but cwo.
	(ii) CI does not include 30 Claim not supported or not justified or probably not true	B1ft B1ft		30 seen or implied
	(iii) CI is a variable oe	B1	[1]	Allow "Sample mean diff" (not population mean).
4	$\begin{aligned} & \mathrm{E}(V)=46+53+2 \times 25=149 \\ & \operatorname{Var}(V)=19^{2}+23^{2}+4 \times 10^{2} \\ & =1290 \\ & \frac{93-149}{\sqrt{1290^{\prime}}} \\ & =-1.559 \\ & 1-\Phi\left({ }^{{fb1fec35a-7995-4a18-9afb-32eb7ddb84c3}} 1.559^{`}\right) \\ & =0.9405 \end{aligned}$	B1 M1 A1 M1 A1ft M1 A1	[7]	or $\sqrt{ }\left(19^{2}+23^{2}+4 \times 10^{2}\right)$ or $\sqrt{ } 1290$ or 35.9 With their mean and their variance. ft their mean and variance providing 3 random variables used, allow $+/$-. Area consistent with their mean Accept 0.940 or 0.941 or 0.94
Page 5 Mark Scheme: Teachers' version	Syllabus	Paper		
:---:	:---:	:---:	:---:	
	GCE A LEVEL - October/November 2010	9709	73	
5	$\text { (i) } \begin{align*} & \int_{2}^{4} \frac{x^{2}}{6} \mathrm{~d} x \quad\left(=\left[\frac{x^{3}}{18}\right]_{2}^{4}\right) \\ & =\frac{4^{3}}{18}-\frac{2^{3}}{18} \\ & =\frac{28}{9} \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt integ $x \mathrm{f}(x)$, ignore limits Subst correct limits in $\frac{x^{3}}{n}$ oe	
:---:	:---:	:---:	:---:	
	(ii)	M1 M1 A1	Attempt integ $\mathrm{f}(x)$ and $=0.5$ (ignore limits). Attempt integ $\mathrm{f}(x)$, limits 2 to unknown or unknown to 4 . Or by areas. $\sqrt{ } 10$ or $3.16(3 \mathrm{sfs})$	
	$\text { (iii) } \begin{aligned} & \int_{3}^{4} \frac{x}{6} \mathrm{~d} x \quad\left(=\left[\frac{x^{2}}{12}\right]_{3}^{4}=7 / 12\right) \\ &\left({ }^{(67} / 12{ }^{2}\right)^{2} \\ &= 49 / 144 \text { or } 0.340(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { M1*dep } \\ & \text { A1 } \end{aligned}$	Attempt integ $\mathrm{f}(x)$, one limit must be 3 . Square their ${ }^{* 7 / 12 "}$	
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
:---:	:---:	:---:	:---:	
	GCE A LEVEL - October/November 2010	9709	73	
6	(i) $\begin{aligned} & \bar{x}=43.5 / 100=0.435 \\ & s=\sqrt{\frac{100}{99}} \times \sqrt{\frac{31.56}{100}-0.435^{2}}(=0.3573) \\ & \text { or } \operatorname{Var}(=0.128) \text { or } 1 / 99\left(31.56-(43.5)^{2} / 100\right) \\ & \mathrm{H}_{0}: \text { Pop mean }(\text { for } \mathrm{B})=0.336 \\ & \mathrm{H}_{1}: \text { Pop mean }(\text { for } \mathrm{B}) \neq 0.336 \\ & \frac{0.435-0.336}{\frac{\mathrm{n}_{0} .3573^{\prime \prime}}{\sqrt{100}}} \\ & =2.77(3 \text { sfs) } \\ & \mathrm{Z}_{\text {crit }}=2.576 \\ & \text { (or } 2.326 \text { consistent with 1-tail test) } \\ & \text { Valid comparison with } z \text {-value } \end{aligned}$ Evidence that B amounts diff from A	B1 M1 B1 M1 A1 B1 M1 A1ft		$\begin{aligned} & s=\sqrt{\frac{31.56}{100}-0.435^{2}} \\ & (=0.3555), \text { or } \operatorname{Var}(=0.126) \end{aligned}$ Undefined mean: B0, but allow just " μ " $\frac{0.435-0.336}{\frac{\overbrace{0.3555 "}^{\sqrt{100}}}{}} \mathrm{M} 1$ Or $\mathrm{X}_{\text {crit }}=$ $0.336+/=" 2.576 " \sqrt{ }(0.12765 / 100)$ Or $\mathrm{x}_{\text {crit }}=(0.244)$ or 0.428 A 1 $\mathrm{z}=2.785(3 \mathrm{sfs}) \mathrm{A} 0$ Or use of area - correct 0.005 (2-tail) or 0.01 (1-tail) Valid comp $\mathrm{P}(z>2.77)$ with 0.005 or 0.01 Or comp 0.435 with " 0.428 " No errors seen. Conclusion consistent with their $\mathrm{H}_{0} / \mathrm{H}_{1}$.No contradictions.
:---:	:---:	:---:	:---:	:---:
	(ii) Must state or imply "No" to score these marks n large \bar{X} approx normally distr or CLT applies		[2]	B0 for "No" with invalid (or no) reason SR both reasons correct but wrong conclusion scores SR B1.
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	
:---:	:---:	:---:	:---:	
	GCE A LEVEL - October/November 2010	9709	73	
7		$\begin{aligned} & \mathrm{H}_{0}: \text { mean no. sales }=2.4 \\ & \mathrm{H}_{1}: \text { mean no. sales }>2.4 \\ & \mathrm{P}(X \geq 5) \\ & =1-\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2!}+\frac{2.4^{3}}{3!}+\frac{2.4^{4}}{4!}\right. \\ & (=1-0.9041) \\ & =0.0959 \end{aligned}$ Comp with 0.05 No evidence to believe mean sales incr	B1 M1* A1 A1 M1* A1ft dep [6]	Or "= 0.8 per week" Accept $\lambda, \operatorname{not} \mu$. Attempted with or without "1-". Allow one end error. Allow incorrect λ in otherwise correct expression. Indep M. (Allow recovery of above 3 marks at this point if comparison with 0.95 done.) Conclusion, no contradictions. SC: $\mathrm{e}^{-2.4} \times \frac{2.4^{5}}{5!}=0.0602>0.05$: \max B1M0A0A0M1A0
:---:	:---:	:---:	:---:	:---:
		Need $1^{\text {st }} x$ such that $\mathrm{P}(X \geq x)<0.05$ $\begin{aligned} & \mathrm{P}(X \geq 6)=1-\mathrm{e}^{-2.4}\left(1+2.4+\ldots+\frac{2.4^{5}}{5!}\right) \\ & (=1-0.9643) \\ & =0.0357 \end{aligned}$	M1* M1*dep A1	Attempt sum of at least 3 relevant Poisson terms, with comparison with 0.05 (can be implied). Can be implied, e.g. by $\mathrm{P}(X \leq 5)=0.9643$ identified.
	(iii)	Mean sales still 0.8 per week, but ≥ 6 sales in 3 weeks, so reject 0.8 .	B1 [1]	Conclude mean sales have increased when not true
	(iv)	Value of true (new, changed) mean oe	B1 [1]	

