9709 w10 ms 72

Page 4	age 4 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2010	9709	72

	1				
1	0.605	$5 \pm z \times \sqrt{\frac{0.605 \times (1-0.605)}{1000}}$	M1		
	z = 1.645 seen		B1	[2]	Allow [0.58, 0.63].
	[0.58	0, 0.630]	A1	[3]	Allow any brackets
2	(i)	$e^{-\frac{10}{3}} \times \frac{(\frac{10}{3})^4}{4!}$	M1		Allow incorrect λ
		= 0.184 or 0.183	A1	[2]	
	(ii)	$\lambda = 5$	B1		
		$e^{-5}\left(1+5+\frac{5^2}{2}\right)$	M1		Allow incorrect λ . Allow one end error
		= 0.125 (3 sfs)	A1	[3]	OR Combination method scores B1, identifying all 6 possible combinations M1, multiply each combination and add (must use at least 5 combinations) A1
3	(i)	B(40 000, 0.0001)	B1	[1]	
	(ii)	Po(4) $n = 40\ 000 > 50, \ np = 4 < 5$	B1*E B1	31*dep [3]	B1 for Po. B1 for 4 Accept 40000 large and 0.0001 small
	(iii)	1 – $(P(X \le 3) \text{ or } e^{-4} (1 + 4 + \frac{4^2}{2} + \frac{4^3}{3!}))$	M1		Allow one end error (any λ)
		$1 - e^{-4} \left(1 + 4 + \frac{4^2}{2} + \frac{4^3}{3!} \right)$	M1		Expression of correct form (any λ), no end errors.
		= 0.567 or 0.566	A1	[3]	(OR Use of normal scores M1, standardising M1, standardising with correct cc A1ft, (ii) 0.599. Award A mark only if normal given in (ii)) (OR Binomial M1 expression of correct form allow end error, M1 correct form no end error, A1ft 0.567 or 0.566. Award A mark only if Bin given in (ii)) NB Part (iii) must be Poisson or ft from (ii) for A mark to be awarded. SR If no answer given in (ii) allow BOD for A marks.

9709 w10 ms 72

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2010	9709	72

4	(i)	$0.5(0.5 + 0.75) \times 0.5 \text{ or } \int_{1}^{1.5} \frac{x}{2} dx$ = $\frac{5}{16}$ or 0.3125 or 0.313	M1 A1	[2]	Attempt find correct area eg 1 squ + $\frac{1}{4}$ squ or integral with correct limits any f(x)
	(ii)	$^{1}/_{2}m \times ^{m}/_{2}$ or $\int_{0}^{m} \frac{x}{2} dx$	M1		Attempt area from 0 to m (or m to 2) their $f(x)$
		$= \frac{1}{2}$	M1		Expression for area = $\frac{1}{2}$. Ignore limits
		$m = \sqrt{2}$ or 1.41	A1	[3]	
	(iii)	$\int_0^2 \frac{x^2}{2} \mathrm{d}x$	M1		Attempt $\int x f(x) dx$. Ignore limits
		$= \frac{4}{3}$ oe	A1	[2]	
5	(i)	$E(F) = 28 + 1/2 \times 52 = 54$ $Var(F) = 5.6^{2} + 1/4 \times 12.4^{2}$ $= 69.8$	B1 M1 A1	[3]	√69.8 or 8.35: M1A0
	(ii)	H ₀ : Grinford mean = 54; H ₁ ; Grinford mean < 54	B1ft		Allow "\mu", otherwise undefined mean: B0 ft their 54
		$\frac{49 - 54}{\sqrt{\frac{69.8}{10}}}$	M1		Standardising must have $\sqrt{10}$
		= -1.89(3) or -1,89(2) allow + Comp with -1.645 (or 1.893 with 1.645)	A1 M1		Comp P($z < -1.893$) with 0.05 Allow comparison with 1.96 for consistent 2-tail test
		Evidence that Grinford mean lower	A1ft	[5]	Allow "Accept Grinford mean lower" No contradictions OR Alt methods $(x - 54)/(\sqrt{69.8/10}) = 1.645$ giving x = 49.65 compare with 49 scores M1A1M1A1ft. oe. No mixed methods.

9709 w10 ms 72

Page 6	ge 6 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2010	9709	72

6	(i)	H_0 : $P(6) = \frac{1}{6}$ H_1 : $P(6) > \frac{1}{6}$	B1		Allow "p"
0	(1)		Бī		Allow p
		$1 - ((^{5}/_{6})^{10} + 10(^{1}/_{6})(^{5}/_{6})^{9} + {}^{10}C_{2}(^{1}/_{6})^{2}(^{5}/_{6})^{8})$	M1		Allow 1 term omitted or extra or incorrect
		= 0.225 (3 sfs) 0.225 > 0.1	A1 M1		Allow correct comparison with 0.9, and recovery of previous then M1A1
		No evidence that die biased	A1ft	[5]	possible. Allow Accept die not biased. In context. SR Calc just P(3)max score B1M0A0M1A0
	(ii)	P(4 or more sixes)	M1		Idea of $1 - \Sigma$ of terms oe compared
		$= 1 - (({}^{5}/_{6})^{10} + 10({}^{1}/_{6})({}^{5}/_{6})^{9} + {}^{10}C_{2}({}^{1}/_{6})^{2}({}^{5}/_{6})^{8} + {}^{10}C_{3}({}^{1}/_{6})^{3}({}^{5}/_{6})^{7})$	M1		with 0.1 $1 - \Sigma$ of appropriate no.terms oe compared with 0.1
		= 0.0697 or 0.0698	A 1	[3]	compared with 0.1
	(iii)	Concluding die is fair when die is biased	B1	[1]	Must be in context
7 (a)	(i)	Pop too large Not all pop accessible	B1	[1]	Time consuming Or similar
	(ii)	Testing involves destruction	В1	[1]	Or similar
(b)	(i)	${}^{9850}/_{500} = (19.7)$ ${}^{500}/_{499}({}^{194125}/_{500} - ({}^{9850}/_{500})^2)$ $= 0.160(32) (3 sfs) or 80/499$	B1 M1 A1	[3]	Allow with √. Method must be seen or clearly implied.
	(ii)	$\frac{19.73 - 19.7}{\sqrt{\frac{"0.160"}{60}}}$	M1		For standardising
		= 0.580 or 0.581 $1 - \Phi(\text{``0.580''})$ (= $1 - 0.7191$)	A1ft M1		ft their mean and var in (b)(i) Correct tail
		(=1-0.7191) = 0.281	A1	[4]	
	(iii)	"Yes" must be seen or implied to gain mks X not nec'y normal Sample large	B1 B1	[2]	or \overline{X} is approx N (SR Both reasons correct, but wrong or no conclusion scores SR B1)