							9709 w10 ms 6 <u></u> 3				
	Page 4 Mark Scheme: Teacher					eachers'	version		Syllabus	Paper	
	GCE A LEVEL – October/M				ber/Nov	ember 20	1ber 2010 9709				
1	Normal mean 60 kg, variance 90 kg ²						B1 B1 [2]	Any se varianc 4–15 k	sensible values (mean 40–80 kg, nce 16–225 kg ²), could give s.d. kg		
2	(i) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$]	M1 M1 A1	1, 2, 3, 4, 5 seen, together with some probabilities involving <i>k</i> but not <i>x</i> summing probs involving <i>k</i> to 1 correct answer				
							[3]	[3]			
	(ii) $E(X)$ = $k + 4k + 9k + 16k + 25k$ = $55k = 11/3$ (3.67)						M1 A1ft [2]	using Σpx no dividing correct answer, ft on 55k, $0 < k < 1$			
3	$\begin{array}{c} 3 (i) \\ 9 0.68 \\ 0.05 \\ 0.32 \\ 0.64 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$						M1 A1 [2]	Y = young, M = middle-aged, O = old Correct shape with Ph, NPh first All probabilities and correct			
	(ii) $P(Ph \mid M) = \frac{0.68 \times 0.25}{0.68 \times 0.25 + 0.32 \times 0.1}$ = 0.842 (170/202)						B1 M1 A1 [3]	For correct numerator using cond prob formula with numerator < denominator For attempt at P($35 - 60$ years old), involving the sum of two 2-factor probs, seen anywhere Correct answer			
4	(i) $\overline{x} = 60 + 245/70$ = 63.5					M1 A1 [2]	245/70 seen Correct answer				
	(ii) $\Sigma(x-50) = \Sigma x - \Sigma 50$ = 245 + 70 × 60 - 70 × 50 = 945						M1 A1 [2]	Any va Correc	Any valid method, involving 70 Correct answer		
(iii) coded mean = 945/70 = 13.5 $\frac{\Sigma(x-50)^2}{70} - \left(\frac{945}{70}\right)^2 = 10.6^2$							M1	Using variance formula with coded mean			

 $\Sigma(x-50)^2 = 20623 \ (20600)$

A1

[2]

Correct answer

		970	9 w10 ms 63	3
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE A LEVEL – October/November 2010	9709	63	

5	(i)	2 to 4 4 to 6 6 to 7 7 to 8 8 to 10 10 to 16 20 44 34 30 30 36	M1 A1 A1 [3]	Using fd to evaluate freqs Any four correct All correct
	(ii)	mid-points 3, 5, 6.5, 7.5, 9, 13 $E(X) = (3 \times 20 + 5 \times 44 + 6.5 \times 34 + 7.5 \times 30 + 9 \times 30 + 13 \times 36) / 194 = 1464/194$	M1	5 or 6 correct mid-points
		= 7.55	A1ft [2]	Correct answer, ft on 6 correct mid- points and the frequencies in their table
	(iii)	p = 60/194 (0.309) P(1) = 2 × (60/194)(134/193) = 8040/18721 (0.429)	B1ft M1 A1 [3]	60/194 seen, ft on (their 30 + their 30) / their total multiplying a probability by 2 Correct answer
6	(i)	${}^{14}P_{12} = 4.36 \times 10^{10}$	M1 A1 [2]	¹⁴ P ₁₂ seen oe Correct answer
	(ii)	business people $3! = 6$ students $5! = 120$ married couples ${}^{3}P_{2} \times 2 \times 2 = 24$ total ways = 17280	B1 B1 B1 B1 [4]	3! oe seen, not in denominator 5! oe seen, not in denominator 24 oe seen, not in denominator correct final answer
	(iii)	Mrs Brown 3 Mrs Lin 10 Student 5 Prob = $3 \times 10 \times 5 \times {}^{11}P_9 / (i)$ = 0.0687 OR ₁ 3/14 × 10/13 × 5/12 = 150/2184 (0.0687)	B1 B1 M1 A1 [4] B1 B1 M1 A1	any 2 of 3, 10, 5 oe seen, not in denominator ¹¹ P ₉ seen multiplied dividing by their (i) correct answer any 2 of numerators 3, 10, 5 oe seen denominators 14, 13, 12 of 3 fractions multiplying 3 separate fractions correct answer
		$OR_2 1 - 3/14 = 11/14$ $1 - 11/14 \times 5/13 = 127/182$ $8/14(4/13 \times 12/12 + 9/13 \times 7/12) +$ $3/14(3/13 \times 12/12 + 10/13 \times 7/12)$ = 1206/2184 1 - (1524 + 1716 - 1206)/2184 = 150/2184	B1 B1 M1 A1	1 - 3/14 seen $1 - 11/14 \times 5/13$ seen attempt to find P(Mrs Lin not behind a student and Mrs Brown not in front row), involving $8/14 \times \text{prob} + 3/14 \times \text{prob}$ correct answer

						<u>9709 w10 ms 63</u>			
Page 6			Mark Scheme: Teachers'	Syllabus	Paper				
GCE A LEVEL – October/Nove				ember 20	010	9709	63		
7	(i)	z = 0.807		B1	0.807 se	een			
		$0.807 = \frac{1}{2}$	$\frac{0-8.2}{\sigma}$	M1	standard	lising, must have	σ, no sq rt, no		
		s = 2.23	0	A1	cc and a correct a	answer			
				[3]					
	(ii) $P(>1 \text{ min from mean}) = P(mod z > \frac{1}{2.23})$			M1	standardising, their sd, no cc and adding two areas				
		= P(z > 0.4484)			using $1 - \Phi(z)$				
		=(1-0.6) = 0.654	129) * 2	A1	correct answer				
					L				
	(iii)	$P(> 2 \log \theta)$	ger) = $1 - P(0, 1, 2 \text{ longer})$	M1	binomia	l term ${}^{6}C_{x}p^{x}(1-p)$	$(x)^{6-x}$		
		$= 1 - \{(0.7)^{6}C_{2}(0.21)^{2}\}$	$(0.79)^6 + {}^6C_1(0.21)(0.79)^5 + (0.79)^4$	A1	correct	unsimplified answ	ver		
	= 0.112			A1 [3]	correct answer				
	(iv)	(iv) $\mu = 35 \times 0.5 = 17.5$ $\sigma^2 = 35 \times 0.5 \times 0.5 = 8.75$			17.5 and 8.75 or $\sqrt{8.75}$ seen				
	$P(X < 16) = \Phi\left(\frac{15.5 - 17.5}{\sqrt{8.75}}\right)$			M1	standardising, with or without cc, must have sd in denom				
				M1	continui seen	ity correction 15.5	or 16.5 only,		
		$= 1 - \Phi(0, 0)$ = 1 - 0.75	676) 05	M1	using 1	$-\Phi(z)$			
		= 0.2495 ((0.249 or 0.250)	A1	correct	answer			
	OR ${}^{35}C_0 0.5^0 0.5^{35} + {}^{35}C_1 0.5^{1} 0.5^{34} + {}^{35}C_2 0.5^{2} 0.5^{33} +$ = 8582372584/2 ³⁵ = 0.250			M1 A1 M1 A1 A1 A1	binomia at least 2 summin correct a	al term ${}^{35}C_x 0.5^x 0.5$	^{35−x} Þ 0) seen		