	Page	Mark S	ahomo: Toachors' vorsion		970 Syllabus	9 w10 ms 62 Paper	
	Faye		Mark Scheme: Teachers' version GCE A LEVEL – October/November 2010			62	
1	4p + 5p2 + 1.5p + 2.5p + 1.5p = 1 10p2 + 19p - 2 = 0			Summi	ng 5 probs to $= 1$ of	can be implied	
	p=0.1	1 or –2	A1	For 0.1	seen with or with	out –2	
	p = 0.1	1	A1 [3]		Choosing 0.1 must be by rejecting –2		
2	(i) Σ	$(x-50) = 824 - 16 \times 50 =$	24 B1	Correct	answer		
	<u>Σ</u>	$\frac{\Sigma(x-50)^2}{16} - \left(\frac{\Sigma(x-50)}{16}\right)^2$	= 6.5 ² M1	$\begin{array}{c} \text{coded } v\\ \text{for } \Sigma x^2 \end{array}$	ent substituting in variance formula O then expanding $\Sigma(2)$ 2 correct	R valid method	
	Σ	$(x-50)^2 = 712$	A1 [3]		answer		
	(ii) n	ew mean = 896/17 (= 52.7)	B1	Correct	answer		
	n	ew var = $\frac{712 + 22^2}{17} - \left(\frac{24}{17}\right)$	$\left(\frac{+(72-50)}{17}\right)^2$ M1	with $n = \frac{1}{2}$	he correct coded w = 17 and new code $x^2 + 72^2)/17$ – the	ed mean ² OR	
	n	ew sd = 7.94	A1 [3]	or 7.98	ng to correct answ or 7.91	ver, accept 7.95	

	Page 5		Mark Scheme: Teachers'	version	<u>9709_w10_ms_62</u> Syllabus Paper		
	<u> </u>		GCE A LEVEL – October/Nov				
L							
3	P(<i>E</i> and 12) =	$=\frac{2}{5}\times$	$\frac{4}{36} = \frac{8}{180} \left(2/45\right)$	M1	2/5 or 3/5 mult by dice-relatedprobability seen anywhere2 4		
	P(12) 3	1	8 11 (0.0(11))	A1	$\frac{2}{5} \times \frac{4}{36}$ seen oe		
	$P(12) = -\frac{5}{5} \times \frac{1}{2}$	36 + - 1	$\frac{8}{80} = \frac{11}{180}(0.0611)$	M1 A1ft	Summing two 2-factor probs involving 2/5 and 3/5 $3/5 \times 1/36$ + their P(E and 12), ft their P(E 12)		
	$P(E \mid 12) = \frac{P(E \text{ and } 12)}{P(12)}$			M1dep	Subst in condit prob formula, must have a fraction		
	$=\frac{8}{11}(0.727)$			A1 [6]	Correct answer		
		nd (4,3 nd ditt	8) or (3,4) or (2,6) or (6,2) o	M1	List attempt evens		
	Gives 8 op		ptions	A1	8 options		
		Odd: 1 and (6,6) or 3 and (6,6) or 5 and (6,6) Gives 3 options			List attempt odds 3 options		
	$Prob(E \mid 12) = 8/11$			M1 A1	(Their even)/(their total) Correct answer		
4	(i) sugar		flour	B1	Correct stem must be integers. (stem and leaves can be in reverse order)		
	8 1 7	194 195 196 197	1 5 9 3 2 4 7	B1	Correct leaves flour must be single and ordered		
	9 4 3 4 8 7 4 1	198 199 200 201		B1	Correct leaves sugar must be single and ordered		
	key 1	196 2	1 2				
	means 1.961 kg for sugar and 1.962 kg for flour			B1ft [4]	Correct key needs all this, ft if single leaves and 1.96 etc in stem		
	(ii) med = 1	.989 k	g	B1	correct median		
	IQ range	e = 2.0	011 – 1.977	M1	subt their LQ from their UQ, UQ > med, LQ < med		
	= 0.034	kg		A1 [3]	Correct answer		

_	De	~~ 6	Mark Sahama, Tasahara'	voroion		<u>w10 ms 62</u>	
	Page 6		Mark Scheme: Teachers' GCE A LEVEL – October/Nove	Syllabus	Paper 62		
			GCE A LEVEL - OCIODEI/NOV	510 5705	02		
5	(i)		$=\frac{367 - 320}{21.6} = 2.176$ $z = \frac{367 - 350}{7.5} = 2.267$	M1	Standardising either car's fuel, no cc, no sq, no $$		
		P(Zotoc) =	= 0.985	A1	Correct answer		
		P(Ganmor	r) = 0.988	A1 [3]	Correct answer		
	(ii)	<i>z</i> = 0.23	220	B1	± 0.23 seen		
		$0.23 = \frac{x - x}{2}$	<u>- 320</u> 1.6	M1	Standardising either car, n no sq	o cc, no sq rt,	
		<i>x</i> = 324.96	58	M1ind	320 + d - 320 i.e. just <i>d</i> or	n num	
		<i>d</i> = 4.97		A1 [4]	Correct answer, -4.97 gets	s A0	
6	(i)	-	given prob, independent trials, en no. of trials, only two outcomes	B1 B1 [2]	One option correct Three options correct		
	(ii)	P(8, 9, 0,	1) =	M1	One term seen involving (0	$(0.3)^{x}(0.7)^{9-x}({}^{9}C_{x})$	
		⁹ C ₈ (0.3) ⁸ ($(0.7) + (0.3)^9 + (0.7)^9 + {}^{9}C_1(0.3)(0.7)^8$	A1	Correct unsimplified expre	ession	
		= 0.196		A1 [3]	Correct answer		
	(iii)	var = 18.9		B1	Expressions for 27 and 18	.9 (4.347) seen	
		P(X > 35)	$= 1 - \Phi\left(\frac{35.5 - 27}{\sqrt{18.9}}\right)$	M1	Standardising one express sq rt in denom, cc not nece	,	
			.955) = 0.0253	M1	Continuity correction appl	ied at least	
		P(X < 27) = 0.4542	$= \Phi\left(\frac{26.5 - 27}{\sqrt{18.9}}\right) = 1 - \Phi(0.115)$	M1	once $(1 - \Phi_1) + (1 - \Phi_2)$ accept if no cc	(0.0329 + 0.5)	
			p = 0.480 accept 0.48	A1 [5]	Rounding to correct answe	er	

Page 7	Mark Scheme: Teach	Syllabus	9_w10_ms_ Paper		
	GCE A LEVEL – October/		62		
(i) 4M 2W o	r 5M 1W	M1	At least 1 of ${}^{10}C_4 \times {}^{9}C_2$ and ${}^{10}C_5 \times {}^{9}C_1$ seen		
chosen in = 9828	${}^{10}C_4 \times {}^9C_2 + {}^{10}C_5 \times {}^9C_1$	A1 A1 [3]	Correct unsimplified exp Correct answer	· ·	
(ii) ${}^{9}C_{3} \times {}^{8}C_{1}$	$+ {}^{9}C_{4} = 798$	M1	One of ${}^{9}C_{3} \times {}^{8}C_{1}$ and ${}^{9}C_{4} \times ({}^{8}C_{0})$ seen		
Prob = 79	8/9828 = 0.0812	A1 [2]	Correct answer		
= 3360	not T ${}^{9}C_{3} \times {}^{8}C_{2} + {}^{9}C_{4} \times {}^{8}C_{1}$ not A ${}^{9}C_{4} \times {}^{8}C_{1} + {}^{9}C_{5}$	M1	One of ${}^{9}C_{3} \times {}^{8}C_{2}$ or ${}^{9}C_{4} \times {}^{9}C_{5} \times ({}^{8}C_{0})$ seen	⁸ C ₁ or	
= 1134		A1	Unsimplified 3360 or 113	34 seen	
Number of	of ways = 4494	A1 [3]	Correct final answer		
	$5 \times 2 \text{ or } 6! - 5! \times 2 (= 480)$ $5 \times 4 \text{ or } 4! \times {}^{5}P_{2} (= 480)$	B1	$6! - 4! \times 5 \times 2 \text{ or } 6! - 5!$ or $4! \times 5 \times 4 \text{ or } 4! \times {}^{5}P_{2}$	× 2	
prob = 48	0/6! = 2/3 (0.667)	M1 A1 [3]	dividing by 6! correct answer		
OR using	probabilitiesas above				
	en together $5!/4! (= 5)$		5 10		
	together = $15 - 5 = 10$ s MMMWW = $6!/4!2! = 15$	B1 M1 A1	5 or 10 seen Dividing by 15 Correct answer		