Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	62

$\text { 1 } \begin{aligned} & 4 p+5 p^{2}+1.5 p+2.5 p+1.5 p=1 \\ & 10 p^{2}+19 p-2=0 \\ & \\ & p=0.1 \text { or }-2 \\ & \\ & p=0.1 \end{aligned}$	M1 A1 A1 [3]	Summing 5 probs to $=1$ can be implied For 0.1 seen with or without -2 Choosing 0.1 must be by rejecting -2
2 (i) $\begin{aligned} & \Sigma(x-50)=824-16 \times 50=24 \\ & \frac{\Sigma(x-50)^{2}}{16}-\left(\frac{\Sigma(x-50)}{16}\right)^{2}=6.5^{2} \end{aligned}$ $\Sigma(x-50)^{2}=712$	B1 M1 A1 [3]	Correct answer Consistent substituting in the correct coded variance formula OR valid method for Σx^{2} then expanding $\Sigma(x-50)^{2}, 3$ terms at least 2 correct Correct answer
(ii) new mean $=896 / 17(=52.7)$ $\text { new var }=\frac{712+22^{2}}{17}-\left(\frac{24+(72-50)}{17}\right)^{2}$ new $\mathrm{sd}=7.94$	B1 M1 A1 [3]	Correct answer Using the correct coded variance formula with $n=17$ and new coded mean ${ }^{2}$ OR their $\left(\Sigma x^{2}+72^{2}\right) / 17-$ their new mean ${ }^{2}$ Rounding to correct answer, accept 7.95 or 7.98 or 7.91

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	$\mathbf{6 2}$

$3 \mathrm{P}(E$ and 12$)=\frac{2}{5} \times \frac{4}{36}=\frac{8}{180}(2 / 45)$ $\begin{aligned} & \mathrm{P}(12)=\frac{3}{5} \times \frac{1}{36}+\frac{8}{180}=\frac{11}{180}(0.0611) \\ & \mathrm{P}(E \mid 12)=\frac{\mathrm{P}(E \text { and } 12)}{\mathrm{P}(12)} \\ & =\frac{8}{11}(0.727) \end{aligned}$ OR list Even: $\quad 2$ and $(4,3)$ or $(3,4)$ or $(2,6)$ or $(6,2)$ 4 and ditto Gives 8 options Odd: $\quad 1$ and $(6,6)$ or 3 and $(6,6)$ or 5 and $(6,6)$ Gives 3 options $\operatorname{Prob}(E \mid 12)=8 / 11$	A1 M1 A1ft M1dep A1 [6] M1 A1 M1 A1 M1 A1	$2 / 5$ or $3 / 5$ mult by dice-related probability seen anywhere $\frac{2}{5} \times \frac{4}{36} \text { seen oe }$ Summing two 2-factor probs involving $2 / 5$ and $3 / 5$ $3 / 5 \times 1 / 36+$ their $\mathrm{P}(\mathrm{E}$ and 12$)$, ft their P(E 12) Subst in condit prob formula, must have a fraction Correct answer List attempt evens 8 options List attempt odds 3 options (Their even)/(their total) Correct answer
4 (i) $\begin{array}{ll}\text { key } & 1\|196\| 2\end{array}$ means 1.961 kg for sugar and 1.962 kg for flour	B1 B1 B1 B1ft [4]	Correct stem must be integers. (stem and leaves can be in reverse order) Correct leaves flour must be single and ordered Correct leaves sugar must be single and ordered Correct key needs all this, ft if single leaves and 1.96 etc in stem
$\text { (ii) } \begin{aligned} & \mathrm{med}=1.989 \mathrm{~kg} \\ & \text { IQ range }=2.011-1.977 \\ & =0.034 \mathrm{~kg} \end{aligned}$	B1 M1 A1 [3]	correct median subt their $L Q$ from their $U Q, U Q>$ med, $\mathrm{LQ}<\mathrm{med}$ Correct answer

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	$\mathbf{6 2}$

$\begin{aligned} & 5 \quad \text { (i) } \text { Zotoc: } z=\frac{367-320}{21.6}=2.176 \\ & \text { Ganmor: } z=\frac{367-350}{7.5}=2.267 \\ & \mathrm{P}(\text { Zotoc })=0.985 \\ & \mathrm{P}(\text { Ganmor })=0.988 \end{aligned}$	M1 A1 A1 [3]	Standardising either car's fuel, no cc, no sq, no $\sqrt{ }$ Correct answer Correct answer
$\text { (ii) } \begin{aligned} z & =0.23 \\ 0.23 & =\frac{x-320}{21.6} \\ x & =324.968 \\ d & =4.97 \end{aligned}$	B1 M1 M1ind A1 [4]	$\pm 0.23 \text { seen }$ Standardising either car, no cc, no sq rt, no sq $320+d-320$ i.e. just d on num Correct answer, -4.97 gets A0
6 (i) constant/given prob, independent trials, fixed/given no. of trials, only two outcomes	B1 [2]	One option correct Three options correct
$\text { (ii) } \begin{aligned} & \mathrm{P}(8,9,0,1)= \\ &{ }^{9} \mathrm{C}_{8}(0.3)^{8}(0.7)+(0.3)^{9}+(0.7)^{9}+{ }^{9} \mathrm{C}_{1}(0.3)(0.7)^{8} \\ &= 0.196 \end{aligned}$	M1 A1 A1 [3]	One term seen involving $(0.3)^{x}(0.7)^{9-x}\left({ }^{9} \mathrm{C}_{x}\right)$ Correct unsimplified expression Correct answer
$\text { (iii) } \begin{aligned} & \text { mean }=90 \times 0.3=27 \\ & \text { var }=18.9 \\ & \mathrm{P}(X>35)=1-\Phi\left(\frac{35.5-27}{\sqrt{18.9}}\right) \\ & =1-\Phi(1.955)=0.0253 \\ & \mathrm{P}(X<27)=\Phi\left(\frac{26.5-27}{\sqrt{18.9}}\right)=1-\Phi(0.115) \\ & =0.4542 \\ & \text { Total prob }=0.480 \text { accept } 0.48 \end{aligned}$	B1 M1 M1 M1 A1	Expressions for 27 and 18.9 (4.347) seen Standardising one expression, must have sq rt in denom, cc not necessary Continuity correction applied at least once $\left(1-\Phi_{1}\right)+\left(1-\Phi_{2}\right) \text { accept }(0.0329+0.5)$ if no cc Rounding to correct answer

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	$\mathbf{6 2}$

7 (i) 4 M 2 W or 5 M 1 W $\begin{aligned} & \text { chosen in }{ }^{10} \mathrm{C}_{4} \times{ }^{9} \mathrm{C}_{2}+{ }^{10} \mathrm{C}_{5} \times{ }^{9} \mathrm{C}_{1} \\ & =9828 \end{aligned}$	M1 A1 A1 [3]	At least 1 of ${ }^{10} \mathrm{C}_{4} \times{ }^{9} \mathrm{C}_{2}$ and ${ }^{10} \mathrm{C}_{5} \times{ }^{9} \mathrm{C}_{1}$ seen Correct unsimplified expression Correct answer
(ii) $\begin{aligned}{ }^{9} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{1}+{ }^{9} \mathrm{C}_{4}=798 \\ \text { Prob }=798 / 9828=0.0812\end{aligned}$	M1 A1 [2]	One of ${ }^{9} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{1}$ and ${ }^{9} \mathrm{C}_{4} \times\left({ }^{8} \mathrm{C}_{0}\right)$ seen Correct answer
$\text { (iii) Albert } \begin{aligned} & \text { not } \mathrm{T} \ldots .{ }^{9} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{1} \\ &=3360 \\ & \text { Tracey }+ \text { not } \mathrm{A} . . .{ }^{9} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{1}+{ }^{9} \mathrm{C}_{5} \\ &=1134 \\ & \text { Number of ways }=4494 \end{aligned}$	M1 A1 A1 [3]	One of ${ }^{9} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{2}$ or ${ }^{9} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{1}$ or ${ }^{9} \mathrm{C}_{5} \times\left({ }^{8} \mathrm{C}_{0}\right)$ seen Unsimplified 3360 or 1134 seen Correct final answer
(iv) 6 ! -4 ! $\times 5 \times 2$ or $6!-5!\times 2(=480)$ OR $4!\times 5 \times 4$ or $4!\times{ }^{5} \mathrm{P}_{2}(=480)$ prob $=480 / 6!=2 / 3(0.667)$ OR using probabilities...as above OR Women together 5!/4! (=5) Women not together $=15-5=10$ total ways MMMMWW $=6!/ 4!2!=15$ prob $=2 / 3$	B1 M1 A1 [3] B1 M1 A1	$6!-4!\times 5 \times 2$ or $6!-5!\times 2$ or $4!\times 5 \times 4$ or $4!\times{ }^{5} \mathrm{P}_{2}$ dividing by 6 ! correct answer 5 or 10 seen Dividing by 15 Correct answer

