9709 w10 ms 61

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	61

$\begin{aligned} & 1 \quad \text { mean }=18.2 \\ & \text { sd } \\ &=\sqrt{876 / 50} \\ &=4.19 \end{aligned}$	B1 M1 A1 [3]	Correct unsimplified expression seen Correct answer
$2 \begin{aligned} & \text { mean }=200 \times 2 / 15(=26.67)(80 / 3) \\ & \text { variance }=200 \times 2 / 15 \times 13 / 15(=23.11)(208 / 9) \\ & \mathrm{P}(21<X<35)= \\ & \mathrm{P}\left(\frac{21.5-26.67}{\sqrt{23.11}}\right)<z<\frac{34.5-26.67}{\sqrt{23.11}} \\ & \\ & =\mathrm{P}(-1.075<z<1.629) \\ & =0.8589+0.9483-1 \\ & =0.807 \end{aligned}$	B1 M1 M1 M1 A1 [5]	mean and variance correct standardising, \pm, with or without cc , must have sq rts continuity corrections 20.5 or $21.5,34.5$ or 35.5 $\Phi_{1}+\Phi_{2}-1$ answer rounding to 0.807
3 (i) $\begin{aligned} \mathrm{P}(X>20) & =\mathrm{P}(z>-6.4 / 3.7) \\ & =\mathrm{P}(z>-1.730) \\ & =0.9582 \end{aligned}$ Number of students $=335$ or 336	M1 A1 A1ft [3]	Standardising no ce no sq rt Prob rounding to 0.958 Correct answer ft their prob, must be integer
(ii) $\mathrm{P}($ very slow $)=0.05$ $\begin{aligned} & \mathrm{P}(0,1,2)= \\ & (0.95)^{8}+{ }^{8} \mathrm{C}_{1}(0.05)^{1}(0.95)^{7}+{ }^{8} \mathrm{C}_{2}(0.05)^{2}(0.95)^{6} \\ & =0.6634+0.2793+0.0515 \\ & =0.994 \end{aligned}$	B1 M1 M1 A1 [4]	0.05 or 0.95 seen Binomial term with ${ }^{8} \mathrm{C}_{r} p^{r}(1-p)^{8-r}$ seen any p Correct expression for $\mathrm{P}(0,1,2), p$ close to 0.05 Answer rounding to 0.994
$\begin{aligned} & 4 \quad \text { (i) } \begin{array}{l} 3 \end{array}=2 x / 10 \\ &=15 \\ & \text { height }=\text { freq / class width } \\ &=x / 20=0.75 \mathrm{~cm} \end{aligned}$	M1 A1 M1 A1 [4]	Attempt at using freq density $=\mathrm{freq} / \mathrm{cw}$ Correct answer Attempt at using $\mathrm{fd}=\mathrm{freq} / \mathrm{cw}$ with different cw from above Correct answer
(ii) mean wt $=$ $\begin{aligned} & (5.5 \times 30+15.5 \times 60+23 \times 45+28 \times 75 \\ & +40.5 \times 60+60.5 \times 15) / 285 \end{aligned}$ $=26.6 \text { grams }$	M1 M1 A1 [3]	Using freqs or frequency ratios and midpoints, attempt not ucb, not cw (can do it without x) Correct unsimplified answer can have fr ratios Correct answer

9709 w10 ms 61

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	61

$\mathrm{P}($ Rick B, Brenda B, Ali not $B)$ $+\mathrm{P}($ Rick B, Brenda not B, Ali B) $+\mathrm{P}($ Rick not B, Brenda B, Ali B) $=11 / 210+2 / 210+1 / 90=23 / 315$ $\mathrm{P}($ Rick B, Brenda B, Ali $B)=1 / 315$ $\operatorname{Prob}($ at least 2 at entrance B) $=24 / 315(8 / 105)(0.0762)$						M1 M1 M1 A1 [4]	Obtaining probs of each person for each entrance (can be implied or awarded in part (i) or part (ii)) Considering options 2 meet 1 doesn't, must have at least two 3-factor terms Adding option all three meet, must be added to a prob Correct answer
(ii) $\mathrm{P}($ entrance $A)=1 / 210(0.00476)$ $\mathrm{P}($ entrance $B)=1 / 315(0.00317)$ $\mathrm{P}($ entrance $C)=1 / 63(0.0159)$ $\mathrm{P}($ entrance $D)=1 / 30(0.0333)$ $\mathrm{P}($ same entrance $)=2 / 35(0.0571)$	$\mathrm{P}($ entrance $A)=1 / 210(0.00476)$ $\mathrm{P}($ entrance $B)=1 / 315$ (0.00317) $\mathrm{P}($ entrance $C)=1 / 63(0.0159)$ $\mathrm{P}($ entrance $D)=1 / 30(0.0333)$ $\mathrm{P}($ same entrance $)=2 / 35(0.0571)$					M1 M1 A1 A1 [4]	Obtaining a three-factor prob for any entrance Adding four three-factor probabilities for the 4 entrances Two or more correct entrance probabilities Correct answer
6 (i)	$\begin{aligned} & { }^{6} \mathrm{P}_{4}=6!/ 2! \\ & =360 \end{aligned}$					${ }^{\text {B1 }}$	Correct answer
(ii)	$4!/ 2!=12$					${ }^{\text {B1 }}$	Correct answer
(iii) 4 ! $\times{ }^{6} \mathrm{C}_{4}=360$ or ${ }^{6} \mathrm{P}_{4}$						B1 [1]	Correct final answer
$\begin{aligned} & \text { (iv) e.g. 2R 1B 1G, 1R 2B 1G, 1R 1B 2G } \\ & =\frac{4!}{2!}+\frac{4!}{2!}+\frac{4!}{2!}=36 \text {, mult by }{ }^{6} \mathrm{C}_{3} \\ & \text { total }=720 \end{aligned}$						M1 M1 A1 [3]	$4!/ 2$! seen Mult by ${ }^{6} \mathrm{C}_{3}$ Correct answer
(v) $2 \mathrm{R} 2 \mathrm{~B}=4!/ 2!2!=6$ Mult by ${ }^{6} \mathrm{C}_{2}$, total $=90$ Answer $=360+720+90=1170$						M1 A1 A1ft [3]	Considering 2 colours e.g. RRBB or RBBR or... mult by ${ }^{6} \mathrm{C}_{2}$ Ft their (iii) + (iv) +(v)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	61

$\begin{gathered} 7 \text { (i) If } y=\mathrm{P}(\text { odd number }) \text { then } \mathrm{P}(\text { even number })=2 y \\ 3 y+6 y=1 \text { so } y=1 / 9 \text { oe. } \mathrm{OR} \text { prob }=1 / 3 \end{gathered}$	M1 A1 [2]	$2 \mathrm{P}(\mathrm{Odd})$ shown $=\mathrm{P}($ Even $)$ and summed to 1 correct answer accept either
(ii) Score of 8 means throwing a 6 6 is even so $\mathrm{P}(8)=2 / 9(\mathrm{AG})$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	legit justification of use of $2 / 9$
$\text { (iii) } \begin{aligned} \operatorname{Var}(X) & =(48+36+98+128+100) / 9-(58 / 9)^{2} \\ & =4.02 \text { accept } 4.025(326 / 81) \end{aligned}$	M1 A1 [2]	Correct method no dividings, 6.44 squared subt numerically Correct answer
$\text { (iv) } \begin{aligned} & \mathrm{P}(\text { score } 6,10)+\mathrm{P}(\text { score } 10,6)+\mathrm{P}(\text { score } 8,8) \\ = & 1 / 81+1 / 81+4 / 81 \\ = & 6 / 81(2 / 27)(0.0741) \end{aligned}$	M1 A1 [2]	Summing two different 2-factor probabilities Correct answer
$\text { (v) } \begin{aligned} & \mathrm{P}(\text { score } 6,10)=1 / 81 \\ & \mathrm{P}\left(\text { s }^{\text {st }} \text { score } 6 \text { given total } 16\right) \\ & =(1 / 81) \div(6 / 81) \\ & =1 / 6 \end{aligned}$	B1 M1 A1 [3]	$1 / 81$ seen in numerator Dividing by their (iv) Correct answer

