Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	53

1	(i) $2 \mathrm{mx} 0.45+\mathrm{mx} 0.3=3 \mathrm{mv}$	M1	Table of values idea
	$\mathrm{v}=0.4 \mathrm{~m}($ from AB)	A1	
	$2 \mathrm{mx} 0.45+\mathrm{mx}(0.9+0.3)=3 \mathrm{mh}$	M1	Table of values idea
	$\mathrm{h}=0.7 \mathrm{~m}($ from AD)	${ }^{\mathrm{A} 1}{ }_{[4]}$	
	(ii) $\tan \alpha=0.4 / 0.7$	M1	
	$\alpha=29.7^{\circ}$	A1ft [2]	Accept 0.519 radians
2	(i) $\tan \alpha=5 /\left(26 \cos 30^{\circ}\right)$	M1	
	$\alpha=12.5^{\circ}(0.219 \mathrm{rad})$ below the horizontal	A1	Accept $77.5 \% / 1.35 \mathrm{rad}$ with downward vertical
	$5^{2}=\left(26 \sin 30^{\circ}\right)^{2}-2 \mathrm{gs}$	M1	
	$\mathrm{s}=7.2 \mathrm{~m}$	${ }^{\mathrm{A} 1}{ }_{[4]}$	
	(ii) $-\left(26 \sin 30^{\circ}\right)=\left(26 \sin 30^{\circ}\right)-\mathrm{gT}$	M1	Or time to greatest height if later doubled
	$\mathrm{T}=2.6 \mathrm{~s}$	A1	
	$\mathrm{OA}=\left(26 \cos 30^{\circ}\right) \times 2.6=58.5 \mathrm{~m}$	A1 [3]	Or B1 for $\mathrm{OA}=26^{2} \sin \left(2 \times 30^{\circ}\right) / 10=$ 58.5
3	(i) $\mathrm{T}_{P Q}=(0.4 \mathrm{~g})=4 \mathrm{~N}$	B1	
	$\mathrm{T}_{B Q}=0.4 \times 5^{2} \times 0.3$	M1	Uses $\mathrm{F}=\mathrm{m} \omega^{2} \mathrm{r}$
	$\mathrm{T}_{B Q}=3 \mathrm{~N}$	A1 [3]	
	(ii) $\mathrm{T} \cos \alpha=0.8 \mathrm{~g}+4$	M1	Attempts to find either component of T
	$\mathrm{T} \sin \alpha=0.8 \times 5^{2} \times 0.3$	A1	Both components correct
	$\mathrm{T}^{2}=12^{2}+6^{2}$	M1	Or any equivalent method to find T
	$\mathrm{T}_{A P}=13.4 \mathrm{~N}(=6 \sqrt{5} \mathrm{~N})$	A1	
	$\alpha^{\circ}=\tan ^{-1}(6 / 12)=\tan ^{-1}(1 / 2)=26.6^{\circ}$	B1ft	
OR	$\mathrm{T} \cos \alpha=0.8 \mathrm{~g}+4$	M1	Attempts to find either component of T
	$\mathrm{T} \sin \alpha=0.8 \times 5^{2} \times 0.3$	A1	Both components correct
	$\tan \alpha=6 / 12$	M1	
	$\alpha=26.6$	A1	
	$\mathrm{T}_{A P}=13.4 \mathrm{~N}$	$\underset{[5]}{\mathrm{B} 1 \mathrm{ft}}$	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	53

4	(i)	M1	Moments about A
	$\mathrm{Fx} 1.2 \sin 60^{\circ}=15 \times 0.6 \cos 60^{\circ}$	A1	
	$\mathrm{F}=4.33 \mathrm{~N} \quad \mathrm{AG}$	A1 [3]	
	(ii) $\mathrm{F} \cos 30^{\circ}+\mathrm{Fr}=15 \cos 60^{\circ}$	M1	Resolving parallel to the plane
	$\mathrm{Fr}=3.75 \mathrm{~N}$	A1	
OR	$15 \times 0.6 \cos 60^{\circ}=1.2 \mathrm{Fr}$	M1	Moments about B
	$\mathrm{Fr}=3.75 \mathrm{~N}$	A1	
OR	Fcos $30^{\circ} \times 0.6=\operatorname{Fr} \times 0.6$	M1	Moments about centre of rod
	$\mathrm{Fr}=3.75 \mathrm{~N}$	A1 [2]	
	(iii) $\mathrm{R}=15 \cos 30^{\circ}+4.33 \cos 60^{\circ}$	M1	
	$\mathrm{R}=15.2$	A1	$\mathrm{R}=15.155 \ldots$ Accept 15.1
	$\mu(=3.75 / 15.2)=0.247$	$\begin{aligned} & \mathrm{B} 1 \mathrm{ft} \\ & {[3]} \end{aligned}$	From their F and R found but not $\mathrm{R}=\mathrm{W}$
5	(i) $\mathrm{T}=\lambda\left(\sqrt{1.2^{2}+0.5^{2}}-1\right) / 1$	B1	$\mathrm{T}=0.3 \lambda$ or $\mathrm{T}=0.3 \times 26$
	$2 \times T x 0.5 / 1.3=6$	B1	
	$\mathrm{T}=0.3 \lambda=7.8$	M1	
	$\lambda=26 \quad$ AG	A1 [4]	
	(ii) $\mathrm{EE}_{1}=2 \times 26 \times 0.3^{2} / 2 \times 1$	M1	(=2.34) Use of EPE formula, either
	$\mathrm{EE}_{2}=2 \times 26\left(\sqrt{1.2^{2}+0.9^{2}}-1\right)^{2} / 2 \times 1$	A1	($=6.5$) Both expressions correct
		M1	Conservation of energy (including KE/GPE/EPE)
	$0.6 \mathrm{v}^{2} / 2+0.6 \times 10 \times(0.9-0.5)=6.5-2.34$	A1	
	$\mathrm{V}=2.42 \mathrm{~ms}^{-1}$	A1 [5]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	53

6	(i)	M1	N2L with 3 force terms
	$\begin{aligned} & 0.2 \mathrm{dv} / \mathrm{dt}=-0.5 \mathrm{v}-0.2 \mathrm{~g} \sin 30^{\circ}- \\ & 0.2 \mathrm{~g} \cos 30^{\circ} /(2 \sqrt{3}) \end{aligned}$	A1	$\mathrm{dv} / \mathrm{dtt}=-2.5 \mathrm{v}-5-(5 \sqrt{3}) /(2 \sqrt{3})$
	$\mathrm{dv} / \mathrm{dt}=-2.5(3+\mathrm{v}) \quad \mathrm{AG}$	A1 [3]	
	(ii) $\int \mathrm{dv} /(3+\mathrm{v})=-2.5 \int \mathrm{dt}$	M1	Separates variables and integrates
	$\ln (3+\mathrm{v})=-2.5 \mathrm{t}(+\mathrm{c})$	A1	
	$\mathrm{t}=0, \mathrm{v}=2$, hence $\mathrm{c}=\ln 5$		Or equivalent use of limits
	$\ln 3=2.5 \mathrm{~T}+\ln 5$	M1	$[\ln (3+\mathrm{v})]_{2}^{0}=[-2.5]_{0}^{T}$
	$\mathrm{T}=0.204$	A1 [4]	$\mathrm{T}=0.4 \ln (5 / 3)$
	(iii) $0.2 \mathrm{dv} / \mathrm{dt}=0.2 \mathrm{~g} \sin 30^{\circ}-0.2 \mathrm{~g} \cos 30^{\circ} /(2 \sqrt{3})-$	M1	$\mathrm{dv} / \mathrm{dt}=5-2.5 \mathrm{v}-(5 \sqrt{3}) /(2 \sqrt{3})$
	$\int \mathrm{dv} /(1-\mathrm{v})=2.5 \int \mathrm{dt}$	A1	
	$-\ln (1-\mathrm{v})=2.5 \mathrm{t}(+\mathrm{c})$		
	$t=0, v=0$, hence $\mathrm{c}=0$	B1	Or equivalent
	$-\ln (1-\mathrm{v})=2.5 \times 0.4 \ln (5 / 3)$	M1	Uses $\mathrm{t}=\mathrm{T}$
	$\mathrm{v}=0.4 \mathrm{~ms}^{-1}$	A1 [5]	

