Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	51

1	$0.05 \times 9{ }^{2} \times 0.4=H$	M1	
	$\mathrm{H}=1.62 \mathrm{~N}$	A1	
	$\mathrm{R}=1.70 \mathrm{~N}$	${ }^{\mathrm{A} 1}$	$\sqrt{1.62^{2}+0.5^{2}}$
2	$\mathrm{OG}=0.8 \sin (\pi / 3) /(\pi / 3)$	B1	0.66159
	$\mathrm{OM}=0.8 \cos (\pi / 3)$	B1	0.4
		M1	For taking moments about O
	$0.65(\mathrm{~m}+1.4)=0.4 \mathrm{~m}+0.66159 \mathrm{x} 1.4$	A1	
	$0.25 \mathrm{~m}=0.01159 \times 1.4$	M1	For collecting like terms
	$\mathrm{m}=0.0649$	A1	
OR	$\mathrm{OG}=0.8 \sin (\pi / 3) /(\pi / 3)$	B1	0.66159
	$\mathrm{OM}=0.8 \cos (\pi / 3)$	B1	0.4
		M1	Taking moments about M
	$(1.4+\mathrm{m}) \times 0.25=1.4 \times 0.26159$	A1	
	$0.25 \mathrm{~m}=1.4 \times 0.01159$	M1	For collecting like terms
	$\mathrm{m}=0.0649$	$\mathrm{A}_{[6]}$	
3	(i) $0.6 \times 1.5^{2} /\left(0.2 \cos 30^{\circ}\right)=\mathrm{T} \cos 30^{\circ}$	M1	Uses N2L horizontally with component of tension
	$\mathrm{T}=9 \mathrm{~N}$	A1	
	$\mathrm{R}=0.6 \mathrm{~g}-9 \sin 30^{\circ}$	M1	Resolves vertically, 3 terms
	$\mathrm{R}=1.5 \mathrm{~N}$	A1 [4]	
	(ii) $\mathrm{T} \sin 30^{\circ}=0.6 \mathrm{~g}$	M1	Resolves vertically, 2 terms
	$0.6 \mathrm{v}^{2} /\left(0.2 \cos 30^{\circ}\right)=12 \cos 30^{\circ}$	M1	
	$\mathrm{v}^{2}=3, \mathrm{v}=1.73$	A1 [3]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9709	51

4	(i) $\mathrm{Tx} 0.8=70 \times 1 \sin \alpha+220 \times 2 \sin \alpha$	M1	Moments about A (3 terms)
	$\sin \alpha=1.5 / 1.7$	A1	$\cos \alpha=0.8 / 1.7 \quad \alpha=61.9^{\circ}$
	$\mathrm{T}=562.5 \mathrm{~N}$	$\mathrm{A}_{[3]}$	
	(ii) $\mathrm{H}=562.5 \cos \alpha=265 \mathrm{~N}$	B1	$\mathrm{H}=264.70 \mathrm{~N}$
	$\mathrm{V}=562.5 \sin \alpha-70-220$	M1	$\mathrm{V}=206.3 \mathrm{~N}$
	$\tan \alpha=265 / 206.3$	M1	
	$\alpha=52.1^{\circ}($ with vertical $)$	A1	Or 37.9 (with horizontal)
OR	$\mathrm{X}=(70+220) \cos \alpha=136.6$	B1	Resolving along the rod AB
	$\mathrm{Y}=562.5-(70+220) \sin \alpha=306.7$	M1	Resolving perpendicular to AB
	$\tan \theta=306.7 / 136.6$	M1	
	$\theta=65.99^{\circ}$ or 66.0° (with beam)	A1 [4]	
5	(i) $2 \mathrm{~T} \cos \theta=0.28 \mathrm{~g}$	M1	Tension component $=$ weight
	$2 \mathrm{~T} \times 0.7 / 2.5=2.8, \mathrm{~T}=5$	A1	
	$5=\lambda \times 0.5 / 2$	M1	Hookes Law
	$\lambda=20 \mathrm{~N}$	A1 [4]	
	$\text { (ii) } \begin{aligned} & 0.28 \mathrm{v}^{2} / 2+2 \times 20 \times 0.5^{2} /(2 \mathrm{x} 2)= \\ & 0.28 \mathrm{gx} 0.7+2 \times 20 \times 0.4^{2} /(2 \times 2) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\mathrm{PE} / \mathrm{EE} / \mathrm{KE}$ conservation with 4 terms
	$\mathrm{v}=2.75 \mathrm{~ms}^{-1}$	A1 [3]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	51

6	(i) $81 \mathrm{a}=135-9 \mathrm{v}$	M1	
	$\frac{9}{15-v} \mathrm{dv} / \mathrm{dt}=1 \quad \mathrm{AG}$	A1 [2]	
	(ii) $\int \frac{1}{15-v} \mathrm{dv}=\int \frac{1}{9} \mathrm{dt}$	M1	
	$-\ln (15-\mathrm{v})=\mathrm{t} / 9(+\mathrm{c})$	A1	
	$\mathrm{t}=0, \mathrm{v}=0$, hence $\mathrm{c}=-\ln 15$	M1	
	$\begin{aligned} & \ln \left(\frac{15}{15-v}\right)=\mathrm{t} / 9 \\ & 15 \mathrm{e}^{-t / 9}=15-\mathrm{v} \\ & \mathrm{v}=15\left(1-\mathrm{e}^{-t / 9}\right) \end{aligned}$	${ }^{\mathrm{A} 1}{ }_{[4]}$	
	(iii) $\mathrm{X}=\int 15\left(1-\mathrm{e}^{-t / 9}\right) \mathrm{dt}$	M1	
	$\mathrm{x}=15 \mathrm{t}+15 \mathrm{e}^{-t / 9} /(1 / 9)(+\mathrm{c})$	A1	
	$\begin{aligned} & \mathrm{t}=0, \mathrm{x}=0, \text { hence } \mathrm{c}=-135 \\ & \mathrm{x}(9)=15 \mathrm{x} 9+15 \mathrm{x} 9 \mathrm{e}^{-9 / 9}-135 \end{aligned}$	M1	
	$\mathrm{x}(9)=49.7 \mathrm{~m}$	${ }^{\mathrm{A} 1}$	
7	$\text { (i) } \begin{aligned} \mathrm{x} & =\left(10 \cos 45^{\circ}\right) \mathrm{t} \text { and } \\ \mathrm{y} & =\left(10 \sin 45^{\circ}\right) \mathrm{t}-\mathrm{gt}^{2} / 2 \end{aligned}$	B1	
	$y=\left(10 \sin 45^{\circ} / 10 \cos 45^{\circ}\right) x-10\left(x / 10 \cos 45^{\circ}\right)^{2 / 2}$	M1	
	$y=x-x^{2} / 10$	A1 [3]	
	(ii) $\mathrm{y} / \mathrm{x}=\tan 30^{\circ}$	M1	
	$1-\mathrm{x} / 10=\tan 30^{\circ}$	A1	
	$\mathrm{x}=4.23$	A1 [3]	4.2264...
	(iii) $\mathrm{dy} / \mathrm{dx}=1-2 \mathrm{x} / 10$	M1	$4.2264=\left(10 \cos 45^{\circ}\right) \mathrm{t}$
	$\tan \theta=\mathrm{dy} / \mathrm{dx}$	B1	$\mathrm{t}=0.5977$
	$\tan \theta=1-2 \times 4.23 / 10(=0.15472 .$.	M1	$\tan \theta=\frac{10 \sin 45^{\circ}-10 x 0.5977}{10 \cos 45^{\circ}}$
	$\theta=8.79^{\circ}$	A1 [4]	

