								<u>9709_w10_ms_4</u>			
	Page 4		Mark Schem	e: Teacher	s' ver	sion	0040	Syllabus	Paper		
			GCE AS/A LEVEL	– October/	Nover	nber	2010	9709	43		
1		: 2 0 ⁰			D1						
I	a = g	$gsin 30^{\circ}$			BI		. .	2 0			
	$[(1)] or \frac{1}{2}$	$v_1^2 = 2(gs)$ $h^2 m v_1^2 = r$	$(0.9 \sin 30^{\circ})$		MI		For usi or $1/2$	$ng v^2 = 2as$ $mv^2 = mgh$			
	or (i	ii) $v_2 = (g_1)$	sin30°)0.8]				or $v = a$	at			
	(i)	Speed is	3 ms^{-1} or (ii) Speed is 4	ms^{-1}	A1 D1	[4]					
	(11)	Speed is	4ms or (1) Speed is 3 r	ns	ы	[4]					
2	(i)	$[\frac{1}{2}v^2 =$	10x1.8]		M1		For usi	$ng \frac{1}{2} mv^2 = mgh$			
		Speed is	$6\mathrm{ms}^{-1}$		A1	[2]					
	(ii)	$[WD = \frac{1}{2}]$	$\sqrt{2x0.5(6^2-5^2)}$ or 1.8 = 1/(-0.5-5^2)		M1		For usi	ng WD = loss of H	KE E + DE		
		Work do	$1.8 - \frac{7}{2} \times 0.5 \times 5$ J one is 2.75 J		A1	[2]	OF KEA	$\mathbf{A} + \mathbf{P}\mathbf{E}_{\mathbf{A}} - \mathbf{W}\mathbf{D} - \mathbf{K}$	$E_C + PE_C$		
3	(i)	[2T cos3	$30^{\circ} = 3\sqrt{3}$		M1		For exp	pressing resultant	in terms of T		
		on T/ain	$20^{\circ} - 2 \sqrt{2} / aim 120^{\circ}$				and eq	uating with value			
		or $T^2 - T^2$	$50 = 5\sqrt{5}/(\sin 120)$ $\Gamma^2 + (2\sqrt{2})^2 = 2T(2\sqrt{2})$	aa^20°			or for t	using sine rule			
		or $\sqrt{(T_{\rm c})}$	$(3\sqrt{3})^2 + (T + T_{200}60)^2$	$(2) = 2 \sqrt{2}$			or for f	Sing cosine rule	and aquating		
		or v{(10	(0000) + (1 + 10000)	} - 3 v 3]			or for f	$\frac{11101112}{110}$ KX and KY	and equating		
		Tension	is 3 N		A1	[2]	AG	nt to 5 4 5			
	(ii)	[T = F +	mg sin30]		M1		For res	olving forces on Q	parallel to AC		
		$\bar{R} = mg$	cos30		B1				-		
		3 = 0.75	$(10\cos 30^{\circ})m + 10m\sin$	30°			For usi	ng F = μ R			
		Mass is	0.261 kg	50	A1	[5]					
4	(i)	v(4) = 0	.75x4		B1						
		v(54) = v Velocity	v(4) and v(60) = v(54) - 0 v is 3 ms^{-1} when t = 4 and	0.5(60 - 54) 0 when	B1 B1						
		ι – 00			M1		Graph	consists of 3 straig	zht line		
							segmen	nts with 1^{st} and 3^{rd}	having +ve		
							and -v	e slopes respective	ely; v is single		
							valued v(0) =	0.	rougnout, and		
		2 nd segn	ent has zero slope; end p	points of			ft inco	rrect value(s) for v	(4) and v(60)		
		segment	s are seen to be correct{(60.0)}	(0,0), (4,3),	A1ft	[5]					
			· · · · · · · · · · · · · · · · · · ·			[~]		· · · · ·	· · · ·		
	(1i)	$[XY = \frac{1}{2}]$	$(60 + 50) \times 3$		MI		For usi or $s_1 =$	ng area property f $\frac{1}{2}a_1t_1^2$, $s_2 = u_1t_2$, s	or distance $a_3 = \frac{1}{2} a_2 t_2^2$		
		$XY = \frac{1}{2}$	$x0.75x4^2 + 3x50 - \frac{1}{2}x0$	$.5x6^{2}$]			and XY	$X = s_1 + s_2 - s_3$., <i>, 2 u</i> guz		
		Distance	e is 165 m		A1	[2]					

9'	70	9	w10	ms	43

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9709	43

ſ

5	(i)	$[F^2 = 27.5^2 + (-24)^2]$	M1		For using $F^2 = X^2 + Y^2$ (may be scored in (ii))
		F = 36.5	A1		
		$[\tan \alpha^{\circ} = -(-24/27.5)]$	M1		For using $\tan \alpha^{\circ} = -Y/X$
		$\alpha = 41.1$	Δ1	[4]	
		<i>u</i> -+1.1	<u>л</u> і	["]	
	(ii)	R = 94.9	B1		
		$[\alpha^{\circ} + \theta^{\circ} = \tan^{-1}(87.6/36.5);$	M1		For using $\tan(\alpha^{\circ} + \theta^{\circ}) = 87.6/F$
		or $(\alpha^{\circ} + \theta^{\circ}) = \cos^{-1}(36.5/94.9)$			or $\cos(\alpha^{\circ} + \theta^{\circ}) = F/R$
		or $\theta^{\circ} = \tan^{-1}(87.6 \sin 48.9^{\circ} - 24)/(27.5 + 10^{\circ})$			or $\tan \theta^{\circ} = V/X$
		87 6cos48 9°)]			
		a - 26.2	A 1 ft	[2]	ft 67 1 incorrect of
		0-20.5	AIII	[3]	It $07.4 - \text{Incorrect} \alpha$
6	(i)		M1		For using $a(t) = \dot{v}(t)$
	()	$a_1(t) = 1.44t - 0.288t^2$, $a_2(t) = 2.4 - 0.48t$	A1		
		$\begin{bmatrix} a_1(t) & 11 + t & 0.200t \\ a_2(t) & 2 + t & 0.10t \end{bmatrix}$	M1		For evaluating $a_1(5)$ and $a_2(5)$
		$[a_1 - 1.7778] = 0.200823, a_2 - 2.7 - 0.7083]$		[4]	Tor evaluating $a_1(5)$ and $a_2(5)$
		$a_1 - a_2 (-0) \rightarrow$ no instantaneous change	AI	[4]	
	(ii)		M1		For using $s = \int v dt$
		$s_1 = 0.24t^3 = 0.024t^4 s_2 = 1.2t^2 = 0.08t^3$	Δ1		5
		$S_1 = 0.24t = 0.024t , S_2 = 1.2t = 0.08t$	AI M1		For using limits 0 to 5 and 5 to 10 an
		$\left[\left\{ (0.24X3 - 0.024X3) - (0 - 0) \right\} + \left((1.2x10^2 - 0.09x10^3) - (1.2x5^2 - 0.09x5^3) \right) \right]$	111		For using limits 0 to 5 and 5 to 10 or
		$\{(1.2x10 - 0.08x10) - (1.2x3 - 0.08x5)\}$	A 1	141	equivalent
		Distance is 35 m	AI	[4]	
7	(i)	DF = 24000/20	B1		
	()	[DF - R = 1250x0.32]	M1		For using Newton's second law (3 terms)
		R = 800	A1	[3]	
				[0]	
	(ii)	24000/29.9 - 800 = 1250a	B1		
		Acceleration is $0.002 \mathrm{ms}^{-2}$	B1	[2]	
	(iii)	[a = (24000/30 - 800)/1250]	M1		For finding a when $v = 30$ or for using
	. ,	$24000/v - 800 > 0 \rightarrow v < 301$			a > 0 to obtain an inequality for v
		Car not accelerating when $v = 30$ or			1
		Speed cannot reach $30 \mathrm{ms}^{-1}$	A1	[2]	AG
				[]	
	(iv)	$29.9 \le v < 30$ speed approximately			
		constant	B1	[1]	
	(v)	30 ms^{-1} (max error 0.1) or 29.95 ms^{-1}			
	()	$(\max \text{ error } 0.05) \text{ or } 29.9 \text{ ms}^{-1} (\max \text{ error } 0.1)$	B 1	[1]	
				[1]	
	(vi)	(a) $[24 = 1200/T]$	M1		For using $P = \Delta WD / \Lambda t$
	(·-)	Time taken is 50 s	A 1		
		1 mie ukon 15 50 5	111		
			1.64		
		(b) $[s = 30x50 \text{ or } 29.95x50 \text{ or } 29.9x50]$	Ml		For using $s = vt$
		Distance BC is 1500 m or 1500 m or		_	
		1495 m	A1	[4]	
1					

		9709_w10 ms				
Page 6	Mark Scheme: Tea	Syllabus	Paper			
	GCE AS/A LEVEL – Octo	GCE AS/A LEVEL – October/November 2010				
ALTER	NATIVE FOR PART (vi)					
(b) [12	$200\ 000 = 800$ d]	M1	For usi by car'	ng 'no change in s engine = WD a	KE' \rightarrow WD gainst lied)	
Dis	stance BC is 1500 m	A1	resistar	iee (may be mp	neu)	
(a) [t =	= 1500/30 or 1500/29.95 or 1500/29.9) M1	For usi	ng t = s/v		
Tir	me taken is 50 s or 50.1 s or 50.2 s	A1		-		