Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	43

$1 \mathrm{a}=\mathrm{g} \sin 30^{\circ}$ $\left[(\mathbf{i}) \mathrm{v}_{1}{ }^{2}=2\left(\mathrm{~g} \sin 30^{\circ}\right) 0.9\right.$ or $1 / 2 \mathrm{mv}_{1}{ }^{2}=\operatorname{mg}\left(0.9 \sin 30^{\circ}\right)$ or (ii) $\left.\mathrm{v}_{2}=\left(\mathrm{g} \sin 30^{\circ}\right) 0.8\right]$ (i) Speed is $3 \mathrm{~ms}^{-1}$ or (ii) Speed is $4 \mathrm{~ms}^{-1}$ (ii) Speed is $4 \mathrm{~ms}^{-1}$ or (i) Speed is $3 \mathrm{~ms}^{-1}$	B1 M1 A1 B1	[4]	For using $v^{2}=2$ as or $1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}$ or $\mathrm{v}=\mathrm{at}$
(i) $\left[1 / 2 \mathrm{v}^{2}=10 \times 1.8\right]$ Speed is $6 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	For using $1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}$
(ii) $\left[\mathrm{WD}=1 / 2 \times 0.5\left(6^{2}-5^{2}\right)\right.$ or $\left.0.5 \times 10 \times 1.8=1 / 2 \times 0.5 \times 5^{2}\right]$ Work done is 2.75 J	M1 A1	[2]	For using $\mathrm{WD}=$ loss of KE or $\mathrm{KE}_{\mathrm{A}}+\mathrm{PE}_{\mathrm{A}}-\mathrm{WD}=\mathrm{KE}_{\mathrm{C}}+\mathrm{PE}_{\mathrm{C}}$
3 (i) $\left[2 \mathrm{~T} \cos 30^{\circ}=3 \sqrt{3}\right.$ or $\mathrm{T} / \sin 30^{\circ}=3 \sqrt{3} / \sin 120^{\circ}$ or $\mathrm{T}^{2}=\mathrm{T}^{2}+(3 \sqrt{3})^{2}-2 \mathrm{~T}(3 \sqrt{3}) \cos 30^{\circ}$ or $\left.\sqrt{ }\left\{\left(\mathrm{T} \cos 30^{\circ}\right)^{2}+\left(\mathrm{T}+\mathrm{T} \cos 60^{\circ}\right)^{2}\right\}=3 \sqrt{3}\right]$ Tension is 3 N	M1 A1		For expressing resultant in terms of T and equating with value or for using sine rule or for using cosine rule or for finding Rx and Ry and equating resultant to $3 \sqrt{3}$ AG
(ii) $\begin{aligned} & {[\mathrm{T}=\mathrm{F}+\mathrm{mg} \sin 30]} \\ & \mathrm{R}=\mathrm{mg} \cos 30 \\ & 3=0.75\left(10 \cos 30^{\circ}\right) \mathrm{m}+10 \mathrm{~m} \sin 30^{\circ} \end{aligned}$ $\text { Mass is } 0.261 \mathrm{~kg}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		For resolving forces on Q parallel to AC For using $\mathrm{F}=\mu \mathrm{R}$
4 (i) $\begin{aligned} & \mathrm{v}(4)=0.75 \times 4 \\ & \mathrm{v}(54)=\mathrm{v}(4) \text { and } \mathrm{v}(60)=\mathrm{v}(54)-0.5(60-54) \end{aligned}$ Velocity is $3 \mathrm{~ms}^{-1}$ when $\mathrm{t}=4$ and 0 when $\mathrm{t}=60$ $2^{\text {nd }}$ segment has zero slope; end points of segments are seen to be $\operatorname{correct}\{(0,0),(4,3)$, $(54,3),(60,0)\}$	B1 B1 B1 M1 A1ft		Graph consists of 3 straight line segments with $1^{\text {st }}$ and $3^{\text {rd }}$ having + ve and -ve slopes respectively; v is single valued and continuous throughout, and $v(0)=0$. ft incorrect value(s) for $\mathrm{v}(4)$ and $\mathrm{v}(60)$
(ii) $[\mathrm{XY}=1 / 2(60+50) \times 3$ or $\left.X Y=1 / 2 \times 0.75 \times 4^{2}+3 \times 50-1 / 2 \times 0.5 \times 6^{2}\right]$ Distance is 165 m	M1 A1		For using area property for distance or $s_{1}=1 / 2 a_{1} t_{1}{ }^{2}, s_{2}=u_{2} t_{2}, s_{3}=1 / 2 a_{3} t_{3}{ }^{2}$ and $X Y=s_{1}+s_{2}-s_{3}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	43

5 (i) $\text { i) } \begin{aligned} & {\left[\mathrm{F}^{2}=27.5^{2}+(-24)^{2}\right]} \\ & \mathrm{F}=36.5 \\ & {\left[\tan \alpha^{\circ}=-(-24 / 27.5)\right]} \\ & \alpha=41.1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	For using $\mathrm{F}^{2}=\mathrm{X}^{2}+\mathrm{Y}^{2}$ (may be scored in (ii)) For using $\tan \alpha^{\circ}=-\mathrm{Y} / \mathrm{X}$
$\text { (ii) } \begin{aligned} & \mathrm{R}=94.9 \\ & {\left[\alpha^{\circ}+\theta^{\circ}=\tan ^{-1}(87.6 / 36.5) ;\right.} \\ & \text { or }\left(\alpha^{\circ}+\theta^{\circ}\right)=\cos ^{-1}(36.5 / 94.9) \\ & \text { or } \theta^{\circ}=\tan ^{-1}\left(87.6 \sin 48.9^{\circ}-24\right) /(27.5+ \\ & \left.\left.87.6 \cos 48.9^{\circ}\right)\right] \\ & \theta=26.3 \end{aligned}$	B1 M1 Alft	[3]	For using $\tan \left(\alpha^{\circ}+\theta^{\circ}\right)=87.6 / \mathrm{F}$ or $\cos \left(\alpha^{\circ}+\theta^{\circ}\right)=\mathrm{F} / \mathrm{R}$ or $\tan \theta^{\circ}=\mathrm{Y} / \mathrm{X}$ ft 67.4 - incorrect α
6 (i) $\begin{aligned} & \mathrm{a}_{1}(\mathrm{t})=1.44 \mathrm{t}-0.288 \mathrm{t}^{2}, \mathrm{a}_{2}(\mathrm{t})=2.4-0.48 \mathrm{t} \\ & {\left[\mathrm{a}_{1}=1.44 \times 5-0.288 \times 25, \mathrm{a}_{2}=2.4-0.48 \times 5\right]} \\ & \mathrm{a}_{1}=\mathrm{a}_{2}(=0) \rightarrow \text { no instantaneous change } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	For using $\mathrm{a}(\mathrm{t})=\dot{v}(\mathrm{t})$ For evaluating $\mathrm{a}_{1}(5)$ and $\mathrm{a}_{2}(5)$
(ii) $\begin{aligned} & \mathrm{s}_{1}=0.24 \mathrm{t}^{3}-0.024 \mathrm{t}^{4}, \mathrm{~s}_{2}=1.2 \mathrm{t}^{2}-0.08 \mathrm{t}^{3} \\ & {\left[\left\{\left(0.24 \times 5^{3}-0.024 \times 5^{4}\right)-(0-0)\right\}+\right.} \\ & \left.\left\{\left(1.2 \times 10^{2}-0.08 \times 10^{3}\right)-\left(1.2 \times 5^{2}-0.08 \times 5^{3}\right)\right\}\right] \end{aligned}$ Distance is 35 m	M1 A1 M1 A1	[4]	For using $\mathrm{s}=\int v d t$ For using limits 0 to 5 and 5 to 10 or equivalent
$\begin{array}{ll} 7 & \text { (i) } \left.\begin{array}{l} \mathrm{DF}=24000 / 20 \\ \\ \\ \\ \\ \\ \mathrm{RF}=800 \end{array} \mathrm{R}=1250 \times 0.32\right] \\ \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	For using Newton's second law (3 terms)
(ii) $24000 / 29.9-800=1250$ a Acceleration is $0.002 \mathrm{~ms}^{-2}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	
(iii) $\begin{aligned} & {[\mathrm{a}=(24000 / 30-800) / 1250} \\ & 24000 / \mathrm{v}-800>0 \rightarrow \mathrm{v}<30] \end{aligned}$ Car not accelerating when $\mathrm{v}=30$ or Speed cannot reach $30 \mathrm{~ms}^{-1}$	M1 A1	[2]	For finding a when $\mathrm{v}=30$ or for using $\mathrm{a}>0$ to obtain an inequality for v AG
(iv) $29.9 \leq \mathrm{v}<30 \rightarrow$ speed approximately constant	B1	[1]	
(v) $30 \mathrm{~ms}^{-1}$ (max error 0.1) or $29.95 \mathrm{~ms}^{-1}$ (max error 0.05) or $29.9 \mathrm{~ms}^{-1}$ (max error 0.1)		[1]	
(vi) (a) $[24=1200 / \mathrm{T}]$ Time taken is 50 s	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using $\mathrm{P}=\Delta \mathrm{WD} / \Delta \mathrm{t}$
(b) $[\mathrm{s}=30 \times 50$ or 29.95×50 or 29.9 x 50$]$ Distance BC is 1500 m or 1500 m or 1495 m	M1 A1	[4]	For using $\mathrm{s}=\mathrm{vt}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	43

ALTERNATIVE FOR PART (vi)

(b) $[1200000=800 \mathrm{~d}]$

M1

A1

M1 A1
For using 'no change in KE ' \rightarrow WD by car's engine $=$ WD against resistance' (may be implied)
Distance BC is 1500 m
(a) $[\mathrm{t}=1500 / 30$ or $1500 / 29.95$ or $1500 / 29.9]$ Time taken is 50 s or 50.1 s or 50.2 s

