	Page 4	Mark Scheme: Teac	hers' ve	rsion		Syllabus	9_w10_ms_4 Paper		
	0	GCE AS/A LEVEL – Octol			2010	9709	42		
1			M1		For reso	olving forces verti-	cally (3 terms		
	R + 2000cos	A1							
	F = 2000sin	15°	B1						
	[2000sin15°	$= \mu (400 \mathrm{g} - 2000 \mathrm{cos} 15^\circ)]$	M1		For usir	$hg F = \mu R$			
	Coefficient is	s 0.25	A1	[5]					
	SR(max. 4/5) for candidates who either: have sin and cos interchanged or have angle 15° above the horizontal								
			M1		For reso	olving forces verti	cally		
	R + 2000sin1	$15^{\circ} = 400 \mathrm{g} \mathrm{and} \mathrm{F} = 2000 \mathrm{cos} 15^{\circ}$	A1						
	[2000cos15°	$= \mu (400 \mathrm{g} - 2000 \sin 15^\circ)]$	M1		For usir	$hg F = \mu R$			
	Coefficient is	s 0.55	A1						
2	Driving force	B1							
	-	M1			ng Newton's secor 3 terms needed	nd law (either			
	DF - 80 g sin DF + 80 g sin drawn ar ar a sin drawn ar	$n2^{\circ} = 80a$ (i) or $n2^{\circ} = 80a$ (ii)	A1						
		is 0.9 ms^{-2} (i) or is 1.6 ms^{-2} (ii)	A1		Accept	0.90 or 0.901 and	1.60		
		is 1.6 ms^{-2} (ii) and is 0.9 ms^{-2} (i)	B1ft	[5]	ft Ans (i) + (ii) = 2.5			
	SR(max. 3/5) for candidates who have sin and cos interchanged								
	Driving force	e = 400/4	B1						
			M1			ng Newton's secor	nd law (either		
	a = -8.74 (i)	<u>and</u> a = 11.2 (ii)	A1		case) —	3 terms needed			
3			M1			olving forces in i a s in at least one of			
		$ os(90^{\circ} - \alpha^{\circ}) = F \text{and} \\ n(90^{\circ} - \alpha^{\circ}) = F $	A1						
	$[6\cos\alpha^{\circ} + 5s]$	$in\alpha^{\circ} = 6sin\alpha^{\circ} - 5cos\alpha^{\circ}$ $= sin\alpha^{\circ}]$	DM1			mpting to solve fo ent on 1 st M1	or α° .		
	$\alpha = 84.8$		A1						
	$[F = 6\cos 84. 5\cos 84.$	$8^{\circ} + 5\sin 84.8^{\circ}; F = 6\sin 84.8^{\circ} - 8^{\circ}]$	DM1			stituting to find F; ent on the 1 st M1			
	F = 5.52		A1	[6]					

Page 5	Mark Scheme: Tea	9709_w10 Syllabus Par						
•	GCE AS/A LEVEL – Octo	9709	42					
First alternative	scheme							
$[2F^2 = 25 +$	$[2F^2 = 25 + 36]$			For using '(resultant of forces of magnitude F) ² = (resultant of forces of magnitudes 5 and 6) ² '				
F = 5.52		A1						
		M1		For using 'resultant of forces of magnitudes 5 and 6 makes angle 45° with x-axis'				
		M1		For usin	g relevant trigono	ometry		
	5°) = 5/6 or tan(135° - α°) = 6/5 or 5°) or sin(135° - α°) = 6/ $\sqrt{61}$ or							
$\sin(\alpha^{\circ}-45)$	5°) or $\cos(135^\circ - \alpha^\circ) = 5/\sqrt{61}$	A1						
$\alpha = 84.8$		A1						
Second alternati	ve scheme							
L L	$[6\cos\alpha^{\circ} + 5\cos(90^{\circ} - \alpha^{\circ})] = 6\sin\alpha^{\circ} - 5\sin(90^{\circ} - \alpha^{\circ})]$			For usin	g Rx = Ry			
$[11\cos\alpha^{\circ}-$	$\sin \alpha^{\circ} = 0$]	M1		For atter	mpting to solve fo	$r \alpha^{o}$		
$\alpha = 84.8$		A1						
	$\cos \alpha^{\circ} + 5\cos(90^{\circ} - \alpha^{\circ})$ or $-5\sin(90^{\circ} - \alpha^{\circ})$	B1						
		M1		For subs	stituting for α			
F = 5.52		A1						
(i) [½ 20	$(2.5^2 - 1.5^2), 20x10x10sin 4.5^\circ]$				g KE loss = $\frac{1}{2}$ m($(u^2 - v^2)$		
		M1		or PE ga	$\sin = mg(L\sin\alpha)$			
	ss = 40 J or PE gain = 157 J	A1						
PE gai	n = 157 J or KE loss = 40 J	B1	[3]					
(ii) [WD=	= 157 - 40 + 50]	M1			g WD by pulling E loss + WD aga			
Work	done is 167 J	A1ft	[2]	ft incorr	ect PE gain + 10,	even if -ve		
(iii) [167 =	Fx10cos15°]	M1		For usin	g WD = FLcos 15	5 ⁰		
Magni	tude is 17.3 N	A1ft	[2]					
	SR (max. 1/2) for candidates who (implicitly) make the unjustifiable assumption that acceleration is constant and apply Newton's second law							
•	ude is 17.3 N from $20gsin4.5^{\circ} - 50/10 = 20 \times (-0.2)$	B1						

		970	9 w10 ms 4
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9709	42

-									
5	(i)	$[15 = 20t - 5t^2 \rightarrow 5(t^2 - 4t + 3) = 0]$	M1		For use of $h = ut - \frac{1}{2} gt^2$				
		t = 1, 3	A1						
		Duration is 2 s (accept $1 < t < 3$)	B1ft	[3]	ft $t_2 - t_1$				
	(ii)		M1		For using $h_P = h_Q$ at time t after P's (or Q's) projection				
		$20t - 5t^{2} = 25(t - 0.4) - 5(t - 0.4)^{2} (or 20(t + 0.4) - 5(t + 4)^{2} = 25t - 5t^{2} or (20 x 0.4 - 5 x 0.4^{2}) + 16t - 5t^{2} = 25t - 5t^{2})$	A1						
		t = 1.2 (or $t = 0.8$)	A1						
					For writing w = w of for both w and w				
		$[v_P = 20 - 10x1.2; v_Q = 25 - 10x(1.2 - 0.4)]$ (or	M1		For using $v = u - gt$ for both v_P and v_Q				
		$v_P = 20 - 10x(0.8 + 0.4); v_Q = 25 - 10x0.8)$]							
		Velocities are $8 \mathrm{ms}^{-1}$ and $17 \mathrm{ms}^{-1}$	A1	[5]					
6	(i)	$[\frac{1}{2} 2.5(\text{speed}_{\text{max}}) = 4]$	M1		For using area property for distance				
U	(1)	Greatest speed is $3.2 \mathrm{ms}^{-1}$		[2]	Tor using area property for distance				
		*	x. 1/2) for candidates who (implicitly) make the unjustifiable assumption that speed _{max}						
		Greatest speed is 3.2 ms ⁻¹ from 2 x $\frac{1}{2}$ 1.25(speed _{max})v = 4	B1						
	(ii)	[V = 3x2]	M1		For using $a = (V - 0)/(4.5 - 2.5)$ or $V = 0 + at$				
		V = 6	A1	[2]					
	(iii)		M1		For using area property for distance from $t = 2.5$ to $t = 14.5$				
		$\frac{1}{2} 6(12 + T) = 48$ or $\frac{1}{2} 6x2 + 6T + \frac{1}{2} 6(10 - T) = 48$ or							
		$\frac{1}{2} 6x^2 + 6(10 - \tau) + \frac{1}{2} 6\tau = 48$	A1ft						
		t = 8.5	A1	[3]	from $4.5 + T$ or $14.5 - \tau$				
	(iv)		M1		For using $a = (0 - V)/(14.5 - 8.5)$ or $0 = V + a(14.5 - 8.5)$				
		Deceleration is 1 ms^{-2}	A1ft	[2]					

						970	9 w10 ms 4
Page 7		Mark Scheme: Teachers' version				Syllabus	Paper
		GCE AS/A LEVEL – Octob	er/Novei	mber 2	2010	9709	42
7 (i)	a(t) = 0.	$006t^2 - 0.24t + 1.8$	B1				
	[0.006(t	$(^2 - 40t + 300) = 0]$	M1		For solv	ing a(t) = 0	
	$T_1 = 10,$	$T_2 = 30$	A1				
			M1		For integ	grating v(t)	
	s(t) = 0.	$0005t^4 - 0.04t^3 + 0.9t^2 + 5t + (C)$	A1				
	[405 - 1]	080 + 810 + 150]	M1		For usin	g limits 0 to T_2 or	equivalent
	Distance	e is 285 m	A1	[7]			
	X 7 1 	· ~ -1	D 1				
(11)	Velocity	v is 5 ms ⁻¹	B1				
		we with v increasing from a +ve $t = 0$ to a maximum	B1				
		creases to a +ve minimum and er increases	B1	[3]			