9709 w10 ms 42

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

First alternative scheme
$\left[2 \mathrm{~F}^{2}=25+36\right]$
$\tan \left(\alpha^{\circ}-45^{\circ}\right)=5 / 6$ or $\tan \left(135^{\circ}-\alpha^{0}\right)=6 / 5$ or
$\cos \left(\alpha^{\circ}-45^{\circ}\right)$ or $\sin \left(135^{\circ}-\alpha^{\circ}\right)=6 / \sqrt{61}$ or $\sin \left(\alpha^{\circ}-45^{\circ}\right)$ or $\cos \left(135^{\circ}-\alpha^{\circ}\right)=5 / \sqrt{61}$
$\alpha=84.8$

Second alternative scheme

$$
\left[6 \cos \alpha^{\circ}+5 \cos \left(90^{\circ}-\alpha^{\circ}\right)\right.
$$

$$
\left.=6 \sin \alpha^{\circ}-5 \sin \left(90^{\circ}-\alpha^{\circ}\right)\right] \quad \text { M1 } \quad \text { For using } \mathrm{Rx}=\mathrm{Ry}
$$

$\left[11 \cos \alpha^{\circ}-\sin \alpha^{0}=0\right]$
For attempting to solve for α^{0}
$\alpha=84.8$
For $\mathrm{F}=6 \cos \alpha^{\circ}+5 \cos \left(90^{\circ}-\alpha^{\circ}\right)$ or
$\mathrm{F}=6 \sin \alpha^{\circ}-5 \sin \left(90^{\circ}-\alpha^{\circ}\right)$ B1

M1 \quad For substituting for α
$\mathrm{F}=5.52$
A1

4 (i) $\left[1 / 220\left(2.5^{2}-1.5^{2}\right), 20 \times 10 \times 10 \sin 4.5^{\circ}\right]$

KE loss $=40 \mathrm{~J}$ or PE gain $=157 \mathrm{~J}$
For using KE loss $=1 / 2 m\left(u^{2}-v^{2}\right)$
or PE gain $=\mathrm{mg}(\operatorname{Lsin} \alpha)$
A1
PE gain $=157 \mathrm{~J}$ or KE loss $=40 \mathrm{~J}$
B1
[3]

A1ft [2] ft incorrect PE gain +10 , even if -ve

M1
For using WD $=\mathrm{FL} \cos 15^{\circ}$
(iii) $\left[167=\mathrm{Fx} 10 \cos 15^{\circ}\right]$

Magnitude is 17.3 N
A1ft
For using WD by pulling force $=\mathrm{PE}$ gain - KE loss + WD against resistance
Work done is 167 J

SR (max. 1/2) for candidates who (implicitly) make the unjustifiable assumption that acceleration is constant and apply Newton's second law
For magnitude is 17.3 N from
$F \cos 15^{\circ}-20 \mathrm{~g} \sin 4.5^{\circ}-50 / 10=20 \times(-0.2) \quad$ B1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	42

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

$7 \quad$ (i) $\mathrm{a}(\mathrm{t})=0.006 \mathrm{t}^{2}-0.24 \mathrm{t}+1.8 \quad \mathrm{~B} 1$
$\left[0.006\left(\mathrm{t}^{2}-40 \mathrm{t}+300\right)=0\right]$
$\mathrm{T}_{1}=10, \mathrm{~T}_{2}=30$ A1

M1 For integrating $\mathrm{v}(\mathrm{t})$
$\mathrm{s}(\mathrm{t})=0.0005 \mathrm{t}^{4}-0.04 \mathrm{t}^{3}+0.9 \mathrm{t}^{2}+5 \mathrm{t}+(\mathrm{C}) \quad \mathrm{A} 1$
$[405-1080+810+150] \quad$ M1
For using limits 0 to T_{2} or equivalent
Distance is 285 m
A1
[7]
(ii) Velocity is $5 \mathrm{~ms}^{-1}$ B1

For curve with v increasing from $a+v e$ value at $\mathrm{t}=0$ to a maximum B1

Then decreases to a + ve minimum and thereafter increases

B1
[3]

