Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	33

1 Obtain $1-6 x$ B1
State correct unsimplified x^{2} term. Binomial coefficients must be expanded. M1
Obtain $\ldots+24 x^{2}$

A1

2 Use of correct quotient or product rule to differentiate x or t
Obtain correct $\frac{3}{(2 t+3)^{2}}$ or unsimplified equivalent
Obtain $-2 \mathrm{e}^{-2 t}$ for derivative of y B1
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$ or equivalent
Obtain -6
cwo A1

Alternative:
Eliminate parameter and attempt differentiation $\left(y=\mathrm{e}^{\frac{-6 x}{1-2 x}}\right)$
Use correct quotient or product rule
M1
Use chain rule
M1
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6}{(1-2 x)^{2}} \mathrm{e}^{\frac{-6 x}{1-2 x}}$
Obtain -6
cwo A1

3 (i) Attempt multiplication and use $\mathrm{i}^{2}=-1$
Obtain $3+4 \mathrm{i}$ A1
Obtain 5 for modulus B1
(ii) Draw complete circle with centre corresponding to their $w^{2} \ldots$
$B 1 \sqrt{ }$
\ldots and radius corresponding to their $\left|w^{2}\right|$ B1 $\sqrt{ }$
Shade the correct region cwo B1

4 (i) Obtain derivative of form $k \cos 3 x \sin 3 x$, any constant k
Obtain $-24 \cos 3 x \sin 3 x$ or unsimplified equivalent
Obtain $-6 \sqrt{3}$ or exact equivalent
A1
(ii) Express integrand in the form $a+b \cos 6 x$, where $a b \neq 0$

M1
Obtain $2+2 \cos 6 x$ o.e.
A1
Obtain $2 x+\frac{1}{3} \sin 6 x$ or equivalent, condoning absence of $+c, \mathrm{ft}$ on a, b A1 $\sqrt{ }$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	33

5 State or imply form $\frac{A}{2 x+1}+\frac{B}{x+2}$
Use relevant method to find A or B M1
Obtain $\frac{4}{2 x+1}-\frac{1}{x+2}$ A1

Integrate and obtain $2 \ln (2 x+1)-\ln (x+2)$ (ft on their $A, B) \quad B 1 \sqrt{ } 1 \sqrt{ }$
Apply limits to integral containing terms $a \ln (2 x+1)$ and $b \ln (x+2)$ and apply a law of logarithms correctly.
Obtain given answer $\ln 50$ correctly

6 (i) State general vector for point on line, e.g.
$-5 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}+s(10 \mathbf{i}+5 \mathbf{j}-5 \mathbf{k})$ or $5 \mathbf{i}+8 \mathbf{j}+\mathbf{k}+t(10 \mathbf{i}+5 \mathbf{j}-5 \mathbf{k})$ or equiv
Substitute their line into equation of plane and solve for parameter
Obtain correct value, $s=\frac{2}{5}$ or $t=-\frac{3}{5}$ or equivalent
Obtain $(-1,5,4)$ o.e.
(ii) State or imply normal vector to p is $2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$

Carry out process for evaluating scalar product of two relevant vectors M1
Using correct process for moduli, divide scalar product by the product of the moduli and evaluate $\arcsin (.$.$) or \arccos (.$.$) of the result.$
Obtain 5.1° or 0.089 rads

7 (i) Attempt integration by parts
Obtain $-x^{-1} \ln x+\int \frac{1}{x^{2}} \mathrm{~d} x, \frac{x \ln x-x}{x^{2}}+2 \int \frac{\ln x}{x^{2}} \mathrm{~d} x-2 \int \frac{1}{x^{2}} \mathrm{~d} x$ or equivalent
Obtain $-x^{-1} \ln x-x^{-1}$ or equivalent
Use limits correctly, equate to $\frac{2}{5}$ and attempt rearrangement to obtain a in terms of $\ln a$
Obtain given answer $a=\frac{5}{3}(1+\ln a)$ correctly
(ii) Use valid iterative formula correctly at least once

Obtain final answer 3.96
Show sufficient iterations to >4 dp to justify accuracy to 2 dp or show sign change in interval (3.955, 3.965)
$[4 \rightarrow 3.9772 \rightarrow 3.9676 \rightarrow 3.9636 \rightarrow 3.9619]$
SR: Use of $a_{n+1}=\mathrm{e}^{\left(\frac{3}{5} a_{n}-1\right)}$ to obtain 0.50 also earns $3 / 3$.

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	33

8 (i) Obtain or imply $R=4 \quad$ B1
Use appropriate trigonometry to find $\alpha \quad$ M1
Obtain $\alpha=52.24$ or better from correct work A1
(ii) (a) State or imply $\theta-\alpha=\cos ^{-1}(-4 \div R)$ M1
Obtain 232.2 or better
(b) Attempt at least one value using $\cos ^{-1}(3 \div R)$

Obtain one correct value e.g. $\pm 41.41^{\circ}$ A1
Use $\frac{1}{2} \theta-\alpha=\cos ^{-1}\left(\frac{3}{R}\right)$ to find θ
Obtain 21.7

9 (i) State $\frac{\mathrm{d} A}{\mathrm{~d} t}=k \sqrt{2 A-5}$ B1
(ii) Separate variables correctly and attempt integration of each side

Obtain $(2 A-5)^{\frac{1}{2}}=\ldots$ or equivalent
Obtain $=k t$ or equivalent A1
Use $t=0$ and $A=7$ to find value of arbitrary constant M1
Obtain $C=3$ or equivalent A1
Use $t=10$ and $A=27$ to find k
Obtain $k=0.4$ or equivalent
Substitute $t=20$ and values for C and k to find value of A
Obtain 63

10 (i) Attempt to solve for m the equation $\mathrm{p}(-2)=0$ or equivalent M1
Obtain $m=6$
A1
Alternative:
Attempt $\mathrm{p}(z) \div(z+2)$, equate a constant remainder to zero and solve for m.
Obtain $m=6$
(ii) (a) State $z=-2$ B1
Attempt to find quadratic factor by inspection, division, identity, M1
Obtain $z^{2}+4 z+16$ A1
Use correct method to solve a 3-term quadratic equation M1
Obtain $-2 \pm 2 \sqrt{3} \mathrm{i}$ or equivalent A1
(b) State or imply that square roots of answers from part (ii)(a) needed M1
Obtain $\pm \mathrm{i} \sqrt{2}$ A1
Attempt to find square root of a further root in the form $x+\mathrm{i} y$ or in polar form M1
Obtain $a^{2}-b^{2}=-2$ and $a b=(\pm) \sqrt{3}$ following their answer to part (ii)(a) A1 $\sqrt{ }$
Solve for a and b M1
Obtain $\pm(1+\mathrm{i} \sqrt{3})$ and $\pm(1-\mathrm{i} \sqrt{3})$ A1

