Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	32

1 EITHER: State or imply non-modular inequality $(2(x-3))^{2}>(3 x+1)^{2}$, or corresponding quadratic equation, or pair of linear equations $2(x-3)= \pm(3 x+1)$
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

$$
\text { Obtain critical values } x=-7 \text { and } x=1
$$

State answer $-7<x<1$
OR: Obtain critical value $x=-7$ or $x=1$ from a graphical method, or by inspection, or by solving a linear equation or inequality
Obtain critical values $x=-7$ and $x=1$ B2
State answer $-7<x<1$
B1
[Do not condone: < for $<$.]

2 Use law for the logarithm of a power, a quotient, or a product correctly at least once M1
Use $\ln \mathrm{e}=1$ or $\mathrm{e}=\exp (1)$
M1
Obtain a correct equation free of logarithms, e.g. $1+x^{2}=\mathrm{e} x^{2}$
Solve and obtain answer $x=0.763$ only
A1
[For the solution $x=0.763$ with no relevant working give $B 1$, and a further $B 1$ if 0.763 is shown to be the only root.]
[Treat the use of logarithms to base 10 with answer 0.333 only, as a misread.]
[SR: Allow iteration, giving B1 for an appropriate formula,
e.g. $x_{n+1}=\exp \left(\left(\ln \left(1+x_{n}^{2}\right)-1\right) / 2\right)$, M1 for using it correctly once, A1 for 0.763 , and A1 for showing the equation has no other root but 0.763.]

3 Attempt use of $\cos (A+B)$ formula to obtain an equation in $\cos \theta$ and $\sin \theta$
M1
Use trig formula to obtain an equation in $\tan \theta($ or $\cos \theta, \sin \theta \operatorname{or} \cot \theta) \quad$ M1
Obtain $\tan \theta=1 /(4+\sqrt{3})$ or equivalent (or find $\cos \theta, \sin \theta$ or $\cot \theta$) A1
Obtain answer $\theta=9.9^{\circ}$
Obtain $\theta=189.9^{\circ}$, and no others in the given interval
[Ignore answers outside the given interval. Treat answers in radians as a misread (0.173, 3.31).]
[The other solution methods are via $\cos \theta= \pm(4+\sqrt{3}) / \sqrt{\left(1+(4+\sqrt{3})^{2}\right)}$ or $\left.\sin \theta= \pm 1 / \sqrt{\left(1+(4+\sqrt{3})^{2}\right)}.\right]$

4 (i) Make recognisable sketch of a relevant graph over the given range
Sketch the other relevant graph on the same diagram and justify the given statement
(ii) Consider sign of $4 x^{2}-1-\cot x$ at $x=0.6$ and $x=1$, or equivalent

Complete the argument correctly with correct calculated values
(iii) Use the iterative formula correctly at least once

Obtain final answer 0.73
Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(0.725,0.735)$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	32

5 (i) State or imply $\mathrm{d} x=2 \cos \theta \mathrm{~d} \theta$, or $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta$, or equivalent \quad B1
Substitute for x and $\mathrm{d} x$ throughout the integral
Obtain the given answer correctly, having changed limits and shown sufficient working

(ii) Replace integrand by $2-2 \cos 2 \theta$, or equivalent B1
 Obtain integral $2 \theta-\sin 2 \theta$, or equivalent
 Substitute limits correctly in an integral of the form $a \theta \pm b \sin 2 \theta$, where $a b \rho 0$ M1
 Obtain answer $\frac{1}{3} \pi-\frac{\sqrt{3}}{2}$ or exact equivalent

[The f.t. is on integrands of the form $a+c \cos 2 \theta$, where $a c \rho 0$.]

6 (i) State modulus is 2
State argument is $\frac{1}{6} \pi$, or 30°, or 0.524 radians B1
(ii) (a) State answer $3 \sqrt{3}+\mathrm{i}$
(b) EITHER: Multiply numerator and denominator by $\sqrt{3}-\mathrm{i}$, or equivalent M1

Simplify denominator to 4 or numerator to $2 \sqrt{3}+2 \mathrm{i} \quad$ A1
Obtain final answer $\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}$, or equivalent A1
OR 1: Obtain two equations in x and y and solve for x or for $y \quad$ M1
Obtain $x=\frac{1}{2} \sqrt{3}$ or $y=\frac{1}{2} \quad$ A1
Obtain final answer $\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}$, or equivalent A1
OR 2: Using the correct processes express $\mathrm{i} z^{*} / z$ in polar form M1
Obtain $x=\frac{1}{2} \sqrt{3}$ or $y=\frac{1}{2} \quad$ A1
Obtain final answer $\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}$, or equivalent
A1
(iii) $\operatorname{Plot} A$ and B in relatively correct positions B1

EITHER: Use fact that angle $A O B=\arg \left(\mathrm{i} z^{*}\right)-\arg z \quad$ M1
Obtain the given answer A1
OR 1: Obtain $\tan A \hat{O} B$ from gradients of $O A$ and $O B$ and the correct $\tan (A-B) \quad$ M1
formula
Obtain the given answer A1
OR 2: Obtain $\cos A \hat{O} B$ by using correct cosine formula or scalar product M1 Obtain the given answer A1

9709 w10 ms 32

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	32

7 (i) State correct equation in any form, e.g. $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k})$
(ii) EITHER: Equate a relevant scalar product to zero and form an equation in λ
$O R 1$: Equate derivative of $O P^{2}$ (or $O P$) to zero and form an equation in λ
$O R$ 2: Use Pythagoras in $O A P$ or $O B P$ and form an equation in $\lambda \quad$ M1
State a correct equation in any form A1
Solve and obtain $\lambda=-\frac{1}{6}$ or equivalent A1
Obtain final answer $\overrightarrow{O P}=\frac{2}{3} \mathbf{i}+\frac{5}{3} \mathbf{j}+\frac{7}{3} \mathbf{k}$, or equivalent A1
(iii) EITHER: State or imply $\overrightarrow{O P}$ is a normal to the required plane M1

State normal vector $2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}$, or equivalent A1 $\sqrt{ }$
Substitute coordinates of a relevant point in $2 x+5 y+7 z=d$ and evaluate $d \quad$ M1
Obtain answer $2 x+5 y+7 z=26$, or equivalent A1
$O R 1$: Find a vector normal to plane $A O B$ and calculate its vector product with a direction vector for the line $A B$

M1*
Obtain answer $2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}$, or equivalent
Substitute coordinates of a relevant point in $2 x+5 y+7 z=d$ and evaluate $d \quad$ M1(dep*)
Obtain answer $2 x+5 y+7 z=26$, or equivalent
A1
OR 2: \quad Set up and solve simultaneous equations in a, b, c derived from zero scalar products of $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ with (i) a direction vector for line $A B$, (ii) a normal to plane $O A B$
Obtain $a: b: c=2: 5: 7$, or equivalent
A1
Substitute coordinates of a relevant point in $2 x+5 y+7 z=d$ and evaluate d
Obtain answer $2 x+5 y+7 z=26$, or equivalent
$O R$ 3: With $Q(x, y, z)$ on plane, use Pythagoras in $O P Q$ to form an equation in x, y and z

M1*
Form a correct equation
A1 $\sqrt{ }$
Reduce to linear form
Obtain answer $2 x+5 y+7 z=26$, or equivalent
$O R$ 4: Find a vector normal to plane $A O B$ and form a 2-parameter equation with
relevant vectors, e.g., $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k})+\mu(8 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k})$

M1*
A1
State three correct equations in x, y, z, λ and μ
Eliminate λ and μ
Obtain answer $2 x+5 y+7 z=26$, or equivalent

A1

Use any relevant method to evaluate a constant
Obtain one of $A=-1, B=2, C=1$
Obtain a second value
Obtain the third value
(ii) Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$ or
$\left(1+2 x^{2}\right)^{-1}$
Obtain correct expansion of each partial fraction as far as necessary
$\mathrm{A} 1 \sqrt{ }+\mathrm{A} 1 \sqrt{ }$
Multiply out fully by $B x+C$, where $B C \rho 0$
Obtain answer $3 x-3 x^{2}-3 x^{3}$
[Symbolic binomial coefficients, e.g., $\binom{-1}{1}$ are not sufficient for the first M1. The f.t. is on A, B, C.]
[If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{ } \mathrm{A} 1 \sqrt{ }$ in (ii), $\max 4 / 10$.]
[If a constant D is added to the correct form, give M1A1A1A1 and B1 if and only if $D=0$ is stated.]
[If an extra term $D /\left(1+2 x^{2}\right)$ is added, give B1M1A1A1, and A1 if $C+D=1$ is resolved to $1 /\left(1+2 x^{2}\right)$.]
[In the case of an attempt to expand $3 x(1+x)^{-1}\left(1+2 x^{2}\right)^{-1}$, give M1A1A1 for the expansions up to the term in x^{2}, M1 for multiplying out fully, and A1 for the final answer.]
[For the identity $3 x \equiv\left(1+x+2 x^{2}+2 x^{3}\right)\left(a+b x+c x^{2}+d x^{3}\right)$ give M1A1; then M1A1 for using a relevant method to find two of $a=0, b=3, c=-3$ and $d=-3$; and then A1 for the final answer in series form.]

9 (i) Use correct product rule M1
Obtain correct derivative in any form A1
Equate derivative to zero and find non-zero x M1
Obtain $x=\exp \left(-\frac{1}{3}\right)$, or equivalent A1
Obtain $y=-1 /(3 \mathrm{e})$, or any \ln-free equivalent
(ii) Integrate and reach $k x^{4} \ln x+l \int x^{4} \cdot \frac{1}{x} \mathrm{~d} x$

Obtain $\frac{1}{4} x^{4} \ln x-\frac{1}{4} \int x^{3} \mathrm{~d} x$
Obtain integral $\frac{1}{4} x^{4} \ln x-\frac{1}{16} x^{4}$, or equivalent
Use limits $x=1$ and $x=2$ correctly, having integrated twice
Obtain answer $4 \ln 2-\frac{15}{16}$, or exact equivalent

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	32

10 (i) State or imply $\frac{\mathrm{d} x}{\mathrm{~d} t}=k(20-x) \quad \begin{array}{ll}\text { Show that } k=0.05 & \text { B1 } \\ & \text { B1 }\end{array}$
(ii) Separate variables correctly and integrate both sides

Obtain term $-\ln (20-x)$, or equivalent
Obtain term $\frac{1}{20} t$, or equivalent
Evaluate a constant or use limits $t=0, x=0$ in a solution containing terms $a \ln (20-x)$ and $b t$
Obtain correct answer in any form, e.g. $\ln 20-\ln (20-x)=\frac{1}{20} t$
(iii) Substitute $t=10$ and calculate x

Obtain answer $x=7.9$
A1 [2]
(iv) State that x approaches 20

B1

