			9709) w10 m;	s 3.
	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	-
		GCE A/AS LEVEL – October/November 2010	9709	32	
1	EITHER:	State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or	r corresponding		
		quadratic equation, or pair of linear equations $2(x-3) = \pm(3x + 3)$	· 1)	B1	
		Make reasonable solution attempt at a 3-term quadratic, or solv	e two linear		
		equations		M1	
		Obtain critical values $x = -7$ and $x = 1$		A1	
		State answer $-7 < x < 1$		A1	
	OR:	Obtain critical value $x = -7$ or $x = 1$ from a graphical method, or	or by inspection,		
		or by solving a linear equation or inequality		B1	
		Obtain critical values $x = -7$ and $x = 1$		B2	
		State answer $-7 < x < 1$		B1	[4]
		[Do not condone: < for <.]			

2 Use law for the logarithm of a power, a quotient, or a product correctly at least once M1 Use $\ln e = 1$ or $e = \exp(1)$ M1 Obtain a correct equation free of logarithms, e.g. $1 + x^2 = ex^2$ A1 Solve and obtain answer x = 0.763 only [4] A1 [For the solution x = 0.763 with no relevant working give B1, and a further B1 if 0.763 is shown to be the only root.] [Treat the use of logarithms to base 10 with answer 0.333 only, as a misread.] [SR: Allow iteration, giving B1 for an appropriate formula, e.g. $x_{n+1} = \exp((\ln(1 + x_n^2) - 1)/2)$, M1 for using it correctly once, A1 for 0.763, and A1 for showing the equation has no other root but 0.763.]

3Attempt use of $\cos(A + B)$ formula to obtain an equation in $\cos \theta$ and $\sin \theta$ M1Use trig formula to obtain an equation in tan θ (or $\cos \theta$, $\sin \theta$ or $\cot \theta$)M1Obtain tan $\theta = 1/(4 + \sqrt{3})$ or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$)A1Obtain answer $\theta = 9.9^{\circ}$ A1Obtain $\theta = 189.9^{\circ}$, and no others in the given intervalA1[Ignore answers outside the given interval. Treat answers in radians as a misread(0.173, 3.31).]

[The other solution methods are via cos $\theta = \pm (4 + \sqrt{3}) / \sqrt{\left(1 + \left(4 + \sqrt{3}\right)^2\right)}$ or

$$\sin \theta = \pm 1/\sqrt{\left(1 + \left(4 + \sqrt{3}\right)^2\right)}.$$

4	(i)	Make recognisable sketch of a relevant graph over the given range Sketch the other relevant graph on the same diagram and justify the given statement	B1 B1	[2]
	(ii)	Consider sign of $4x^2 - 1 - \cot x$ at $x = 0.6$ and $x = 1$, or equivalent Complete the argument correctly with correct calculated values	M1 A1	[2]
	(iii)	Use the iterative formula correctly at least once Obtain final answer 0.73 Show sufficient iterations to at least 4 d p. to justify its accuracy to 2 d p. or show	M1 A1	
		there is a sign change in the interval (0.725, 0.735)	A1	[3]

		970)9_w10_ms_3		
	Pa	ige 5	Mark Scheme: Teachers' version	Syllabus	Paper	r
			GCE A/AS LEVEL – October/November 2010	9709	32	
5	(i)	State or in	mply $dx = 2 \cos \theta d\theta$, or $\frac{dx}{d\theta} = 2 \cos \theta$, or equivalent		B1	
		Substitute	e for x and dx throughout the integral		M1	
		Obtain th working	e given answer correctly, having changed limits and shown	sufficient	A1	[3]
	(ii)	Replace i	ntegrand by $2-2 \cos 2\theta$, or equivalent		B1	
		Obtain in	tegral $2\theta - \sin 2\theta$, or equivalent		B1√	
		Substitute	e limits correctly in an integral of the form $a\theta \pm b \sin 2\theta$, wh	here $ab \triangleright 0$	M1	
		Obtain ar	nswer $\frac{1}{3}\pi - \frac{\sqrt{3}}{2}$ or exact equivalent		A1	[4]
		[The f.t. i	s on integrands of the form $a + c \cos 2\theta$, where $ac \ge 0$.]			
	(i)	State mod	dulus is 2		B1	
		State argu	ament is $\frac{1}{6}\pi$, or 30°, or 0.524 radians		B1	[2]
	(ii)	(a) State	e answer $3\sqrt{3} + i$		B1	
		(b) <i>EITI</i>	<i>HER</i> : Multiply numerator and denominator by $\sqrt{3} - i$, or equ	uivalent	M1	
			Simplify denominator to 4 or numerator to $2\sqrt{3} + 2i$		A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent		A1	
		OR	<i>i</i> : Obtain two equations in x and y and solve for x or for y	,	M1	
			Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$		A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent		A1	
		OR 2	2: Using the correct processes express iz^*/z in polar form		M1	
			Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$		A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent		A1	[4]
	(iii)	Plot A an	d B in relatively correct positions		B1	
	()	EITHER:	Use fact that angle $AOB = \arg(iz^*) - \arg z$		M1	
			Obtain the given answer		A1	
		OR 1:	Obtain tan $A\hat{O}B$ from gradients of OA and OB and the co	errect $tan(A - B)$		
			formula Obtain the since ensure		M1	
		00.2	Obtain the given answer Obtain and \hat{AP} by using correct against formula to reach	n nno du ot	AI	
		<i>OK 2</i> :	Obtain the given answer	i product	A 1	[3]
					111	L-1

Pag		Page 6 Mark Scheme: Teachers' version Syllabus		Syllabus	Paper	
		-	GCE A/AS LEVEL – October/November 2010	9709	32	
7	(i)	State corr	ect equation in any form, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$)	B1	[1]
	(ii)	EITHER:	Equate a relevant scalar product to zero and form an equation P^2 (or QP) to zero and form an equation	on in λ	M1 M1	
		OR 2: State a co	Use Pythagoras in <i>OAP</i> or <i>OBP</i> and form an equation in λ rrect equation in any form		M1 A1	
		Solve and	bobtain $\lambda = -\frac{1}{6}$ or equivalent		A1	
		Obtain fir	hal answer $\overrightarrow{OP} = \frac{2}{3}\mathbf{i} + \frac{5}{3}\mathbf{j} + \frac{7}{3}\mathbf{k}$, or equivalent		A1	[4]
	(iii)	EITHER:	State or imply \overrightarrow{OP} is a normal to the required plane		M1	
			State normal vector $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent	d and avaluate d	A1√ M1	
			Obtain answer $2x + 5y + 7z = 26$, or equivalent	<i>i</i> and evaluate <i>a</i>	A1	
		OR 1:	Find a vector normal to plane AOB and calculate its vector p direction vector for the line AB	product with a	M1*	
			Obtain answer $2i + 5j + 7k$, or equivalent		A1	
			Substitute coordinates of a relevant point in $2x + 5y + 7z = a$ Obtain answer $2x + 5y + 7z = 26$ or equivalent	d and evaluate d	M1(dep*	[•])
		OR 2:	Set up and solve simultaneous equations in <i>a</i> , <i>b</i> , <i>c</i> derived fiproducts of $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ with (i) a direction vector for line A	rom zero scalar B, (ii) a normal	AI	
			to plane OAB Obtain $a \cdot b \cdot c = 2 \cdot 5 \cdot 7$ or equivalent		M1* A1	
			Substitute coordinates of a relevant point in $2x + 5y + 7z = a$	d and evaluate d	M1(dep*	*)
		OR 3	Obtain answer $2x + 5y + 7z = 26$, or equivalent With $Q(x, y, z)$ on plane use Pythagoras in QPQ to form at	equation in r	A1	
		OR J.	y and z	r equation in x,	M1*	
			Form a correct equation		A1	
			Obtain answer $2x + 5y + 7z = 26$, or equivalent		A1	
		<i>OR 4</i> :	Find a vector normal to plane AOB and form a 2-parameter	equation with		
			relevant vectors, e.g., $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + \mu(\mathbf{k} - \mathbf{k})$	$(\mathbf{3i} - 6\mathbf{j} + 2\mathbf{k})$	M1*	
			State three correct equations in x, y, z, λ and μ		Al M1(den*)	
			Obtain answer $2x + 5y + 7z = 26$, or equivalent		A1	[4]

				9709_w10		<u>ms 32</u>	
Paç		ge 7	Mark Scheme: Teachers' version	Syllabus	Paper	•	
			GCE A/AS LEVEL – October/November 2010	9709	32		
8	(i)	State or in Use any r Obtain or Obtain a Obtain th	mply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$ relevant method to evaluate a constant ne of $A = -1$, $B = 2$, $C = 1$ second value e third value		B1 M1 A1 A1 A1	[5]	
	(ii)	Use corre	ect method to obtain the first two terms of the expansion of ($(1+x)^{-1}$ or			
		$(1+2x^2)^{-1}$	1		M1		
		Obtain co Multiply	prrect expansion of each partial fraction as far as necessary out fully by $Bx + C$, where $BC \ge 0$		$A1\sqrt{+}A1$ M1		
		Obtain an [Symboli is on A, B [If B or C in (ii), ma [If a cons D = 0 is s [If an extr resolved t [In the ca expansion answer.] [For the i for using for the fir	as wer $3x - 3x^2 - 3x^3$ c binomial coefficients, e.g., $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the <i>P</i> , <i>C</i> .] C omitted from the form of fractions, give B0M1A0A0A0 in ax 4/10.] tant <i>D</i> is added to the correct form, give M1A1A1A1 and B tated.] ra term <i>D</i> /(1 + 2x ²) is added, give B1M1A1A1, and A1 if <i>C</i> to 1/(1 + 2x ²).] se of an attempt to expand $3x(1 + x)^{-1}(1 + 2x^2)^{-1}$, give M1A1 as up to the term in x^2 , M1 for multiplying out fully, and A1 dentity $3x \equiv (1 + x + 2x^2 + 2x^3)(a + bx + cx^2 + dx^3)$ give M1 a relevant method to find two of $a = 0$, $b = 3$, $c = -3$ and $d =$ hal answer in series form.]	first M1. The f.t (i); M1A1 $\sqrt{A1}\sqrt{1}$ 1 if and only if +D = 1 is 1A1 for the for the final A1; then M1A1 -3; and then A2	A1	[5]	
9	(i)	Use corre Obtain co Equate de Obtain x Obtain y	The product rule prrect derivative in any form erivative to zero and find non-zero x $= \exp(-\frac{1}{3})$, or equivalent = -l/(3e), or any ln-free equivalent		M1 A1 M1 A1 A1	[5]	
	(ii)	Integrate	and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$		M1		
		Obtain $\frac{1}{4}$	$x^4 \ln x - \frac{1}{4} \int x^3 dx$		A1		
		Obtain in	tegral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent		A1		
		Use limit	s $x = 1$ and $x = 2$ correctly, having integrated twice		M1		
		Obtain an	swer $4\ln 2 - \frac{15}{16}$, or exact equivalent		A1	[5]	

	970 <u>9</u> w					<u>s 32</u>
	Page 8		Mark Scheme: Teachers' version	Syllabus	Paper	· _
			GCE A/AS LEVEL – October/November 2010	9709	32	
10	(i)	State or in	mply $\frac{\mathrm{d}x}{\mathrm{d}t} = k(20-x)$		B1	
		Show that	t k = 0.05		B1	[2]
	(ii)	Separate Obtain ter Obtain ter	variables correctly and integrate both sides rm $-\ln(20 - x)$, or equivalent rm $\frac{1}{20}t$, or equivalent		B1 B1 B1	
		Evaluate and <i>bt</i> Obtain co	a constant or use limits $t = 0$, $x = 0$ in a solution containing to prrect answer in any form, e.g. $\ln 20 - \ln(20 - x) = \frac{1}{20}t$	erms $a \ln(20 - x)$) M1* A1	[5]
	(iii)	Substitute Obtain an	t = 10 and calculate x swer $x = 7.9$		M1(dep*) A1	[2]
	(iv)	State that	x approaches 20		B1	[1]