Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

- EITHER: State or imply non-modular inequality $(2(x-3))^2 > (3x+1)^2$, or corresponding 1 quadratic equation, or pair of linear equations $2(x-3) = \pm (3x+1)$ **B**1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear M1 equations Obtain critical values x = -7 and x = 1**A**1 State answer -7 < x < 1**A**1 OR: Obtain critical value x = -7 or x = 1 from a graphical method, or by inspection, or by solving a linear equation or inequality B1 Obtain critical values x = -7 and x = 1B2 State answer -7 < x < 1**B**1 [4] [Do not condone: < for <.]
- Use law for the logarithm of a power, a quotient, or a product correctly at least once

 Use $\ln e = 1$ or $e = \exp(1)$ Obtain a correct equation free of logarithms, e.g. $1 + x^2 = ex^2$ Al Solve and obtain answer x = 0.763 only

 [For the solution x = 0.763 with no relevant working give B1, and a further B1 if 0.763 is shown to be the only root.]

 [Treat the use of logarithms to base 10 with answer 0.333 only, as a misread.]

[SR: Allow iteration, giving B1 for an appropriate formula, e.g. $x_{n+1} = \exp((\ln(1 + x_n^2) - 1)/2)$, M1 for using it correctly once, A1 for 0.763, and A1 for showing the equation has no other root but 0.763.]

3 Attempt use of $\cos(A + B)$ formula to obtain an equation in $\cos \theta$ and $\sin \theta$ M1

Use trig formula to obtain an equation in $\tan \theta$ (or $\cos \theta$, $\sin \theta$ or $\cot \theta$) M1

Obtain $\tan \theta = 1/(4 + \sqrt{3})$ or equivalent (or find $\cos \theta$, $\sin \theta$ or $\cot \theta$) A1

Obtain answer $\theta = 9.9^{\circ}$ A1

Obtain $\theta = 189.9^{\circ}$, and no others in the given interval

[Ignore answers outside the given interval. Treat answers in radians as a misread

(0.173, 3.31).]
[The other solution methods are *via* cos $\theta = \pm (4 + \sqrt{3}) / \sqrt{(1 + (4 + \sqrt{3})^2)}$ or $\sin \theta = \pm 1 / \sqrt{(1 + (4 + \sqrt{3})^2)}$.]

- 4 (i) Make recognisable sketch of a relevant graph over the given range

 Sketch the other relevant graph on the same diagram and justify the given statement

 B1

 [2]
 - (ii) Consider sign of $4x^2 1 \cot x$ at x = 0.6 and x = 1, or equivalent Complete the argument correctly with correct calculated values

 M1

 [2]
 - (iii) Use the iterative formula correctly at least once
 Obtain final answer 0.73
 Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval (0.725, 0.735)

 A1
 [3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

5 (i) State or imply $dx = 2 \cos \theta d\theta$, or $\frac{dx}{d\theta} = 2 \cos \theta$, or equivalent

Substitute for x and dx throughout the integral

M1

Obtain the given answer correctly, having changed limits and shown sufficient working

A1 [3]

[3]

(ii) Replace integrand by $2-2\cos 2\theta$, or equivalent B1
Obtain integral $2\theta - \sin 2\theta$, or equivalent B1 $\sqrt{}$ Substitute limits correctly in an integral of the form $a\theta \pm b \sin 2\theta$, where $ab \triangleright 0$ M1

Obtain answer $\frac{1}{3}\pi - \frac{\sqrt{3}}{2}$ or exact equivalent A1 [4]

[The f.t. is on integrands of the form $a + c \cos 2\theta$, where $ac \triangleright 0$.]

- 6 (i) State modulus is 2 B1 State argument is $\frac{1}{6}\pi$, or 30°, or 0.524 radians B1 [2]
 - (ii) (a) State answer $3\sqrt{3} + i$
 - (b) *EITHER*: Multiply numerator and denominator by $\sqrt{3} i$, or equivalent

 Simplify denominator to 4 or numerator to $2\sqrt{3} + 2i$ Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent

 A1

 OR 1: Obtain two equations in x and y and solve for x or for yObtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$ Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent

 A1

 OR 2: Using the correct processes express iz*/z in polar form

 M1
 - Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent

 OR 2: Using the correct processes express iz^*/z in polar form

 Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$ Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent

 A1

 [4]
 - (iii) Plot A and B in relatively correct positions

 EITHER: Use fact that angle $AOB = \arg(iz^*) \arg z$ Obtain the given answer

 A1
 - OR 1: Obtain tan $A\hat{O}B$ from gradients of OA and OB and the correct tan(A B) formula
 Obtain the given answer

 M1
 A1
 - OR 2: Obtain $\cos A\hat{O}B$ by using correct cosine formula or scalar product Obtain the given answer A1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

7

(i)	State corre	ect equation in any form, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$	B1	[1]
(ii)	OR 1: OR 2: State a con	Equate a relevant scalar product to zero and form an equation in λ Equate derivative of OP^2 (or OP) to zero and form an equation in λ Use Pythagoras in OAP or OBP and form an equation in λ rect equation in any form obtain $\lambda = -\frac{1}{6}$ or equivalent	M1 M1 M1 A1	
		al answer $\overrightarrow{OP} = \frac{2}{3}\mathbf{i} + \frac{5}{3}\mathbf{j} + \frac{7}{3}\mathbf{k}$, or equivalent	A1	[4]
(iii)	EITHER:	State or imply \overrightarrow{OP} is a normal to the required plane State normal vector $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent Substitute coordinates of a relevant point in $2x + 5y + 7z = d$ and evaluate a		
	OR 1:	Obtain answer $2x + 5y + 7z = 26$, or equivalent Find a vector normal to plane AOB and calculate its vector product with a direction vector for the line AB Obtain answer $2\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, or equivalent Substitute coordinates of a relevant point in $2x + 5y + 7z = d$ and evaluate a Obtain answer $2x + 5y + 7z = 26$, or equivalent	A1 M1* A1 d M1(dep*	·)
	OR 2:	Set up and solve simultaneous equations in a , b , c derived from zero scalar products of $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ with (i) a direction vector for line AB , (ii) a normato plane OAB Obtain $a:b:c=2:5:7$, or equivalent Substitute coordinates of a relevant point in $2x + 5y + 7z = d$ and evaluate a . Obtain answer $2x + 5y + 7z = 26$, or equivalent	l M1* A1	·)
	OR 3:	With $Q(x, y, z)$ on plane, use Pythagoras in OPQ to form an equation in x , y and z Form a correct equation Reduce to linear form Obtain answer $2x + 5y + 7z = 26$, or equivalent	M1* A1√ M1(dep*) A1	
	OR 4:	Find a vector normal to plane AOB and form a 2-parameter equation with relevant vectors, e.g., $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + \mu(8\mathbf{i} - 6\mathbf{j} + 2\mathbf{k})$ State three correct equations in x, y, z, λ and μ Eliminate λ and μ Obtain answer $2x + 5y + 7z = 26$, or equivalent	M1* A1 M1(dep*) A1	[4]

A1

[5]

[5]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

(i) State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{1+2x^2}$ 8 **B**1

Use any relevant method to evaluate a constant M1Obtain one of A = -1, B = 2, C = 1**A**1

Obtain a second value A1

Obtain the third value A1 [5]

(ii) Use correct method to obtain the first two terms of the expansion of $(1+x)^{-1}$ or

 $(1+2x^2)^{-1}$ M1

 $A1\sqrt{+}A1\sqrt{-}$ Obtain correct expansion of each partial fraction as far as necessary Multiply out fully by Bx + C, where $BC \triangleright 0$ Obtain answer $3x - 3x^2 - 3x^3$ M1

[Symbolic binomial coefficients, e.g., $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the first M1. The f.t.

is on *A*, *B*, *C*.]

If B or C omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}$ in (ii), max 4/10.]

[If a constant D is added to the correct form, give M1A1A1A1 and B1 if and only if D=0 is stated.

[If an extra term $D/(1+2x^2)$ is added, give B1M1A1A1, and A1 if C+D=1 is resolved to $1/(1 + 2x^2)$.

[In the case of an attempt to expand $3x(1+x)^{-1}(1+2x^2)^{-1}$, give M1A1A1 for the expansions up to the term in x^2 , M1 for multiplying out fully, and A1 for the final answer.]

[For the identity $3x \equiv (1 + x + 2x^2 + 2x^3)(a + bx + cx^2 + dx^3)$ give M1A1; then M1A1 for using a relevant method to find two of a = 0, b = 3, c = -3 and d = -3; and then A1 for the final answer in series form.]

9 M1 (i) Use correct product rule

Obtain correct derivative in any form A₁ Equate derivative to zero and find non-zero x M1

Obtain $x = \exp(-\frac{1}{3})$, or equivalent **A**1

Obtain y = -1/(3e), or any ln-free equivalent **A**1

(ii) Integrate and reach $kx^4 \ln x + l \int x^4 \cdot \frac{1}{x} dx$ M1

Obtain $\frac{1}{4}x^4 \ln x - \frac{1}{4} \int x^3 dx$ **A**1

Obtain integral $\frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$, or equivalent A₁

Use limits x = 1 and x = 2 correctly, having integrated twice M1

Obtain answer $4 \ln 2 - \frac{15}{16}$, or exact equivalent **A**1 [5]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9709	31

- 10 (i) State or imply $\frac{dx}{dt} = k(20 x)$ B1

 Show that k = 0.05
 - (ii) Separate variables correctly and integrate both sides
 Obtain term $-\ln(20-x)$, or equivalent
 Obtain term $\frac{1}{20}t$, or equivalent
 B1
 Evaluate a constant or use limits t=0, x=0 in a solution containing terms $a \ln(20-x)$ and btObtain correct answer in any form, e.g. $\ln 20 \ln(20-x) = \frac{1}{20}t$ A1 [5]
 - (iii) Substitute t = 10 and calculate xObtain answer x = 7.9 M1(dep*) A1 [2]
 - (iv) State that x approaches 20 B1 [1]