9709 w 10 ms	
	Paper

1 EITHER State or imply non-modular inequality $(3 x+1)^{2}>8^{2}$, or corresponding equation or pair of linear equations
Obtain critical values $\frac{7}{3}$ or -3
State correct answer $x<-3$ or $x>\frac{7}{3}$
OR State one critical value, e.g. $x=-3$, by solving a linear equation (or inequality) or from a graphical method or by inspection
State the other critical value correctly
State correct answer $x<-3$ or $x>\frac{7}{3}$
(i) Use the iterative formula correctly at least once
Obtain final answer 1.82
Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval $(1.815,1.825)$
(ii) State equation $x=\frac{7 x}{8}+\frac{5}{2 x^{4}}$, or equivalent

Derive the exact answer $\alpha($ or $x)=\sqrt[5]{20}$
B1
(i) Substitute $x=-1 \mathbf{O R} x=2$ correctly

Equate remainders to obtain correct equation $5-a=26+2 a$ or equivalent
Obtain $a=-7$
(ii) Attempt division by $x-1$ and reach a partial quotient of $x^{2}+k x$

EITHER Show remainder is zero OR substitute $x=1$ to obtain zero B1

4 (a) Obtain integral of the form $k \mathrm{e}^{1-2 x}$ with any non-zero k
Correct integral
(b) Attempt to use double angle formula to expand $\cos (3 x+3 x)$

State correct expression $\frac{1}{2}-\frac{1}{2} \cos 6 x$ or equivalent
Integrate an expression of the form $a+b \cos 6 x$, where $a b \neq 0$, correctly
State correct integral $\frac{1}{2} x-\frac{1}{12} \sin 6 x$, or equivalent

5 State or imply $\ln y=\ln A+x \ln b \quad$ B1
Form a numerical expression for the gradient of the line

Obtain $b=1.65$

Use gradient and one point correctly to find $\operatorname{In} A$
Obtain $\ln A=0.1$
Obtain $A=1.11$

as	Paper
	$\mathbf{2 3}$

6
(i) State $R=\sqrt{5}$

Use trig formula to find $\alpha \quad$ M1 B1

Obtain $\alpha=26.57^{\circ}$ with no errors seen
(ii) Carry out evaluation of $\sin ^{-1}\left(\frac{ \pm 0.4}{\sqrt{5}}\right)\left(\approx \pm 10.3048^{\circ}\right)$

Obtain answer 16.3°
Carry out correct method for second answer
Obtain answer 216.9° and no others in the range
(i) Use product or quotient rule

Obtain correct derivative in any form
Equate derivative to zero and solve for x
Obtain $x=\mathrm{e}^{0.5}$ or $\sqrt{\mathrm{e}}$
Obtain $\frac{1}{2 \mathrm{e}}$, or equivalent
(ii) State or imply correct ordinates $0,0.17328 \ldots, 0.12206 \ldots, 0.08664 \ldots$

Use correct formula, or equivalent, correctly with $h=1$ and four ordinates
Obtain answer 0.34 with no errors seen
(i) State $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{2}, or equivalent

State $2 y+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $2 x y$, or equivalent
Substitute $x=-2$ and $y=2$ and evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain zero correctly and make correct conclusion
(ii) Substitute $x=-2$ into given equation and solve

Obtain $y=-6$ correctly
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$ correctly
Form the equation of the tangent at $(-2,-6)$
Obtain answer $y=2 x-2$

A1 M1 M1 A1 A1 A1

B1 M1 A1 B1 M1 A1 A1 M1
[5]

