Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9709	21

1 EITHER: State or imply non-modular inequality $(x+1)^{2}>(x-4)^{2}$, or corresponding equation or pair of linear equations
Obtain critical value $\frac{3}{2}$
State correct answer $x>\frac{3}{2}$
OR: State a correct linear equation for the critical value, e.g. $x+1=-x+4$, or corresponding correct linear inequality, e.g. $x+1>-(x-4)$
Obtain critical value $\frac{3}{2}$
State correct answer $x>\frac{3}{2}$

2 Use law for the logarithm of a product, a quotient or a power
Obtain $x \log 5=(2 x+1) \log 2$, or equivalent
Solve for x, via correct manipulative technique(s)
Obtain answer $x=3.11$. Allow $x \in[3.10,3.11]$

3 Integrate and obtain $\frac{1}{2} \mathrm{e}^{2 x}$ term
Obtain $2 \mathrm{e}^{x}$ term
Obtain x
Use limits correctly, allow use of limits $x=1$ and $x=0$ into an incorrect form M1
Obtain given answer
A1
S. R. Feeding limits into original integrand, $0 / 5$

4 (i) State $\frac{d x}{d t}=\frac{1}{t-2}$ or $\frac{d y}{d t}=1-9 t^{-2}$
Use $\frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}$
Obtain given answer correctly
(ii) Equate derivative to zero and solve for t

State or imply that $t=3$ is admissible c.w.o., and note $t=-3,2$ cases
Obtain coordinates $(1,6)$ and no others

5 Use correct trig identity to obtain a quadratic in $\cot \theta$ or $\tan \theta$
Solve the quadratic correctly
Obtain $\tan \theta=\frac{1}{2}$ or $-\frac{2}{3}$
Obtain answer 26.6° or 146.3°
Carry out correct method for second answer from either root
Obtain remaining 3 answers from $26.6^{\circ}, 146.3^{\circ}, 206.6^{\circ}, 326.3^{\circ}$ and no others in the range A1 [Ignore answers outside the given range]

6 (i) Consider sign of $\frac{6}{x^{2}}-x-1$ at $x=1.4$ and $x=1.6$, or equivalen M1

Complete the argument correctly with appropriate calculations
(ii) State $\frac{6}{x^{2}}=x+1$

Rearrange equation to given equation or vice versa B1
(iii) Use the iterative formula correctly at least once

Obtain final answer 1.54 A1
Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval $(1.535,1.545)$

7 (i) Substitute $x=1$, equate to zero and obtain a correct equation in any form
Substitute $x=2$ and equate to 10 M1
Obtain a correct equation in any form A1
Solve a relevant pair of equations for a or for b M1
Obtain $a=-17$ and $b=12$ A1
(ii) At any stage, state that $x=1$ is a solution

EITHER: Attempt division by $x-1$ and reach a partial quotient of $3 x^{2}+5 x$ M1
Obtain quotient $3 x^{2}+5 x-12$ A1
Obtain solutions $x=-3$ and $x=\frac{4}{3}$
OR: Obtain solution $x=-3$ by trial and error or inspection B1
Obtain solution $x=\frac{4}{3}$
[If an attempt at the quadratic factor is made by inspection, the M1 is earned if it reaches an unknown factor of $3 x^{2}+5 x+\lambda$ and an equation in $\left.\lambda\right]$

8 (i) Use product rule
Obtain correct derivative in any form A1
Substitute $x=\frac{1}{2} \pi$, and obtain gradient of -1 for normal A1 $\sqrt{ }$
from $y^{\prime}=\sin x-x \cos x$ ONLY
Show that line through $\left(\frac{1}{2} \pi, \frac{1}{2} \pi\right)$ with gradient -1 passes through $(\pi, 0)$
(ii) Differentiate $\sin x$ and use product rule to differentiate $x \cos x$

Obtain $x \sin x$, or equivalent
A1
(iii) State that integral is $\sin x-x \cos x(+c)$

Substitute limits 0 and $\frac{\pi}{2}$ correctly
Obtain answer 1
S. R. Feeding limits into original integrand, $0 / 3$

