			97(<u>09 w10 m</u>	<u>s 2</u> 1
	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	,
		GCE A/AS LEVEL – October/November 2010	9709	21	
1		tate or imply non-modular inequality $(x+1)^2 > (x-4)^2$, or coquation or pair of linear equations	prresponding	M1	
		Obtain critical value $\frac{3}{2}$		A1	
	S	tate correct answer $x > \frac{3}{2}$		A1	
	OR: S	tate a correct linear equation for the critical value, e.g. $x + 1 =$ orresponding correct linear inequality, e.g. $x + 1 > -(x - 4)$	x - x + 4, or	M1	
	C	Obtain critical value $\frac{3}{2}$		A1	
	S	tate correct answer $x > \frac{3}{2}$		A1	[3]
2		he logarithm of a product, a quotient or a power		M1*	
		$5 = (2x+1)\log 2$, or equivalent		A1	
		via correct manipulative technique(s)		M1(dep*)	F 43
	Obtain answe	er $x = 3.11$. Allow $x \in [3.10, 3.11]$		A1	[4]
3	Integrate and	obtain $\frac{1}{2}e^{2x}$ term		B1	
	Obtain $2e^x$ t	2		B1	
	Obtain <i>x</i>			B1	
		prrectly, allow use of limits $x = 1$ and $x = 0$ into an incorrect for	orm	M1	
	Obtain given	answer g limits into original <u>integrand</u> , 0/5		A1	[5]
	S. K. Feeding	g mints into original <u>integrand</u> , 0/3			
4	(i) State $\frac{dx}{dt}$	$\frac{dx}{dt} = \frac{1}{t-2}$ or $\frac{dy}{dt} = 1 - 9t^{-2}$		B1	
	Use $\frac{dy}{dx}$	$=\frac{dy}{dt} \div \frac{dx}{dt}$		M1	
	Obtain g	given answer correctly		A1	[3]
	(ii) Equate (derivative to zero and solve for t		M1	
	• •	imply that $t = 3$ is admissible c.w.o., and note $t = -3$, 2 cases		Al	
	Obtain o	coordinates (1, 6) and no others		A1	[3]
5		rig identity to obtain a quadratic in $\cot \theta$ or $\tan \theta$ adratic correctly		M1 A1	
	Obtain $\tan \theta$	•		A1√	
	Obtain answ	er 26.6° or 146.3°		A1	
	•	rect method for second answer from either root 26.6° , 146.2° , 206.6° , 226.2° and no other	and in the men	M1	۲ <i>(</i> 1
		ning 3 answers from 26.6°, 146.3°, 206.6°, 326.3° and no oth rers outside the given range]	ers in the range	A1	[6]

Page 5		ge 5	9709 Mark Scheme: Teachers' version Syllabus		Paper	_	
			GCE A/AS LEVEL – October/November 2010	9709	21		
	(i)	Consider	sign of $\frac{6}{x^2} - x - 1$ at $x = 1.4$ and $x = 1.6$, or equivalent		M1		
	()		x^2 the argument correctly with appropriate calculations		A1	[2	
						L-	
	(ii)	State $\frac{6}{x^2}$:	= x + 1		B1		
		Rearrange	e equation to given equation or vice versa		B1	[2	
	(iii)	ii) Use the iterative formula correctly at least once			M1		
			al answer 1.54 ficient iterations to justify its accuracy to 2 d.p. or show the	e is a sign change	A1 in		
			al (1.535, 1.545)	e is a sign change	B1	[.	
	(i)	Substitute	x = 1, equate to zero and obtain a correct equation in any fo	orm	B1		
	()	Substitute	x = 2 and equate to 10		M1		
			correct equation in any form		A1 M1		
			levant pair of equations for <i>a</i> or for <i>b</i> = -17 and <i>b</i> = 12		M1 A1	[
	(ii)	At any sta	ge, state that $x = 1$ is a solution		B1		
		EITHER	: Attempt division by $x - 1$ and reach a partial quotient of	$3x^2 + 5x$	M1		
			Obtain quotient $3x^2 + 5x - 12$		A1		
			Obtain solutions $x = -3$ and $x = \frac{4}{3}$		A1		
		OR:	Obtain solution $x = -3$ by trial and error or inspection		B1		
			Obtain solution $x = \frac{4}{3}$		B2		
		[If an attempt at the quadratic factor is made by inspection, the M1 is earned if it reaches					
		an unknov	vn factor of $3x^2 + 5x + \lambda$ and an equation in λ]			['	
3	(i)	Use produ			M1		
			rrect derivative in any form		A1		
		Substitute	$x = \frac{1}{2}\pi$, and obtain gradient of -1 for normal	, .	A1√		
		from $y' = \sin x - x \cos x$ ONL					
		Show that	line through $\left(\frac{1}{2}\pi, \frac{1}{2}\pi\right)$ with gradient –1 passes through ($(\pi, 0)$	M1		
					A1	[
	(ii)		ate sin x and use product rule to differentiate $x \cos x$		M1	_	
		Obtain xs	$\sin x$, or equivalent		A1	[
	(iii)) State that integral is $\sin x - x \cos x (+ c)$		B1			
		a 1 .	limits 0 and $\frac{\pi}{2}$ correctly		M1		
		Substitute	$\frac{1}{2}$ concerny		1011		

© UCLES 2010