9709 w10 ms							
Page 4		Mark Scheme: Teachers' version				Syllabus	Paper
		GCE AS/A LEVEL – O	ctober/Nove	mber 2	2010	9709	12
	1		1		1		
1	(i) $1 + 8(-1)$	$(2x^2) + {}^{8}C_2(-2x^2)^2$	B2, 1		Loses	l for each error	
	1 - 16x	$x^{2} + 112x^{4}$					
				[2]			
	(ii) $(2 - x^2)$	\times their $(1 - 16x^2 + 112x^4)$	M1		Must c	onsider exactly 2	terms
	(1) $(2 \times the$	rir(112) - their(-16)				j _	
	240		A1√				
				[2]			
2	LHS = $\sin^2 x$	$\frac{1}{\cos^2 x - \sin^2 x}$	M1		Replac	e t ² by s^2/c^2 or sec	$^{2}-1$
	$\sin^2 x(1-\cos^2 x)$	$(x^2x)/\cos^2 x$	M1		Use of	$1 - \cos^2 x = \sin^2 x$	
	. 2 . 2	,					
	$\frac{\sin x \sin x}{x}$	c - oe	M1		Valid o	overall method	
	$\cos^2 x$						
	$\tan^2 x \sin^2 x$		A1		AG		
		. 2					
	OR RHS =	$\frac{\sin x}{2} \cdot \sin^2 x$	M1		Replac	e t ² by s^2/c^2	
		$\cos^2 x$			1	2	
	$\sin^2 x(1)$	$-\cos^2 x)/\cos^2 x$	M1		Use of	$1 - \cos^2 x = \sin^2 x$	
	$(\sin^2 x/c)$	$(\cos^2 x) - \sin^2 x$	M1		Valid o	overall method	
	$\tan^2 x -$	$\sin^2 x$	A1		AG		
				[4]			
3	(i) $(k(2t - $	$1)^{-1/2}$	M1		$k \neq 1$		
	0.7(2 <i>t</i> -	$(1)^{-1/2}$	A1		oe		
				[2]			
		- · · · · · · ·					
	(ii) Sub $t = 0.22(2)$	5 into <i>their</i> deriv	MI		T	•,	
	0.23(3)		AI	[2]	Ignore	units	
4	(i) 1.683(1	8)	B1	F 1 3			
				[1]			
	(ii) (2) $\times \frac{1}{4}$	$\times 2^2 \sin 2^3$	M1		Condo	ne omission of fac	stor 2
	(11) $(2) \times 72$ $1/2 \times 22$	$\sim 5 \sin 2.5$ x their 1 683	M1		NB M	0 if using angle of	f 2.3
	Trianol	AOC + COB + sector	M1		Two co	$\frac{1}{1}$ orrect triangles + s	sector
	14.3		A1		co		
				[4]			
5	(a) $d = -7$	ısed	B1		со		
	(<i>m</i> /2)[3	22 + (m-1)(-7)] = 0	M1		Condo	ne omission of (m	/2). Statement
	47		A1		co (cor	ndone $m = 0$)	
				[3]			
	-(1	$^{\eta}$) 0.0 $^{\sigma}$					
	(b) $\frac{a(1-r)}{r}$	$\frac{1}{-1} < \frac{0.9a}{1}$	M1		Allow	for =, <, >, \leq , \geq	
	1-r	1-r					
	$1 - r^n <$	0.9	M1		Needs	inequality sign co	rrect
	$r^n > 0.1$		A1		co		
				[3]			

		· · · · ·		970	9_w10_ms_12		
	Page 5	Mark Scheme	Mark Scheme: Teachers' version				Paper
		GCE AS/A LEVEL –	October/Noven	nber 2	2010	9709	12
6	6 (i) $kx^2 - kx + 1 = 0$ $k^2 - 4k < 0$ 0 < k < 4		M1 M1 A1	[3]	<i>y</i> eliminated Applying $b^2 - 4ac < 0$ or = or \leq or \geq co		
	(ii) $k = 4$ or $(2x - 1)$ $x = \frac{1}{2}$,	hly $y^{2} = 0$ y = 2 or (¹ / ₂ , 2)	B1√ M1 A1, A1	[4]	ft from <i>their</i> $k^2 - 4k = 0$. (Not $k = 0$) ft from <i>their</i> k		
7	(i) $(x-2)^2$ $(x-2)^2$ f(x) > 3	+ 3	M1 A1 B1√	[3]	Must be "-2" $\pm k$ co ft on <i>their</i> '3'		
	(ii) $x - 2 =$ $f^{-1}(x) =$ domain	$(\pm)\sqrt{y-3}$ $= 2 + \sqrt{x-3}$ $is x > 3$	M1 A1 B1√	[3]	\pm not r f(x) + r ft dom	equired for M matrix removal of minus ain of $f^{-1} = range$	rk sign needed of f or for f ⁻¹
	(iii) $h(x) = x$	$x^{2} + 3$	B1	[]	со		
8	(i) $3x^2 + x$ (x + 1)((-1, 1),	-2 = 0 (3x - 2) $\rightarrow x = -1 \text{ or } \frac{2}{3}$ ($\frac{2}{3}$, 6)	M1A1 M1 A1	[4]	Elimin Attemj co	ates x or y. Sets c pt to solve <i>their</i> e	uadratic to 0. quation
	(ii) $AB^2 = (AB)^2 $	$5/3)^2 + 5^2$ 27(0) int = (-1/6, 7/2)	M1 A1 B1√	[3]	their Or (5 $$ ft from	coordinates from (10)/3 oe (1) <i>their</i> (i)	ı (i)
9	(i) $\frac{10-a}{10}$ a = 4	$=\frac{6}{10}$ oe	M1 A1		or PD. AG	E is isos hence Pl	D = 6 (M1)
	(ii) $\overrightarrow{BG} = -$	-10j - 10i + 4k + 6j -10i - 4j + 4k	B2,1	[2]	Any ac each ei	cceptable notatior	n. Loses 1 for
	(iii) $\overrightarrow{BG}.\overrightarrow{BA}$	= 40	M1		Use of	$x_1x_2 + y_1y_2 + z_1z_1$	2
	$\cos GB$ GBA =	$A = \frac{40}{\sqrt{132}\sqrt{100}}$ 69.6°	M1 DM1 A1		Modul All ok Must b	us worked correc – must be using = be the acute angle	tly for either $\pm \overrightarrow{BG} \cdot \pm \overrightarrow{AB}$.
				[4]		C	

		970	9 w10 ms 12
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9709	12

	r				
10	(i)	$h = \frac{8}{x^2}$	M1 A1		Uses $lbh = 4$ co
		$A = \frac{1}{2}x^{2} + 2 \times \frac{1}{2}xh + 2xh + \frac{5}{4}x \times \frac{4}{5}x$	M1		Allow 1 error but needs the lid
		$A = (3/2)x^2 + 3xh$			
		$A = \frac{3}{2}x^{2} + 3x \times \frac{8}{x^{2}}$	M1		For substitution of h as $f(x)$
		$A = \frac{3}{2}x^{2} + \frac{24}{x}$	A1	[5]	AG
	(ii)	$\frac{dA}{dx} = 3x - \frac{24}{x^2} = 0$	B1 M1		Correct derivative. Sets to 0 and attempts to solve.
		<i>x</i> = 2	A1		со
		$\frac{d^2 A}{dx^2} = 3 + \frac{48}{x^3}$	M1		Reasonable attempt – allow 1 error
		> 0 when $x = 2$ hence minimum	A1	[5]	co AG (Result consistent with their f")
11	(i)	A = (0, 1) $B = (5, \frac{1}{2})$	B1 B1		
		$y - 1 = -\frac{1}{10}(x - 0)$	M1		ft <i>their A,B</i>
		$y = -\frac{1}{10}x + 1$	A1	[4]	AG
	(ii)	Curve: $(\pi) \int_0^5 (3x+1)^{-1/2} dx$	M1		Attempt $\int_0^5 y^2 dx$ (π not vital)
		$\frac{2\pi}{3} \left[(3x+1)^{\frac{1}{2}} \right]_{0}^{5}$	A1A1		$(\pi \text{ not vital})$. 2 nd A mark is for \div 3.
		$\frac{2\pi}{3}[4-1]$ [2π]	DM1		Application of limits to <i>their</i> integral (in either integral). Limits 0 to 5 only.
		Line: $(\pi) \int_0^5 (\frac{1}{100}x^2 - \frac{1}{5}x + 1)dx$	M1		Attempt $\int_0^5 y^2 dx$ (π not vital)
		$(\pi)\left[\frac{1}{300}x^3 - \frac{1}{10}x^2 + x\right]_0^5$	A2,1		Also directly $-\frac{10}{3}(-\frac{1}{10}x+1)^3$
		$(\pi)\left[\frac{125}{300} - \frac{25}{10} + 5\right]$			or $-\frac{10}{3}\left[\left(-\frac{1}{2}+1\right)^3-1^3\right]$ (π not vital)
		$\left[\frac{35\pi}{12}\right]$			– applying limits to <i>their</i> integral
		Volume = $\frac{35\pi}{12} - 2\pi = \frac{11\pi}{12}$	DM1 A1	[9]	Subtraction of <i>their</i> volumes co