Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	11

1	$\begin{aligned} & \int\left(x+\frac{1}{x}\right)^{2} \mathrm{~d} x \\ & =\frac{x^{3}}{3}-\frac{1}{x}+2 x+(c) \end{aligned}$	B1 $\times 3$	[3]	co. Omission of middle term of expansion can still get $2 / 3$.
2	$(1+a x)^{6}$ Term in $x=6 a x$ Equate with $-30 \rightarrow a=-5$ Term in $x^{3}=\frac{6.5 .4}{3!} a^{3}$ \rightarrow coefficient of -2500	B1 B1 $\sqrt{ }$ B1 B1 $\sqrt{ }$	[4]	co $\sqrt{ }$ from his answer for $6 a x$ co For $20 \times a^{3}$
3	$\begin{aligned} & \mathrm{f}: x \mapsto 2 x+3, \\ & \mathrm{~g}: x \mapsto x^{2}-2 x, \\ & \mathrm{gf}(x)=(2 x+3)^{2}-2(2 x+3) \\ & =4 x^{2}+8 x+3 \\ & =4(x+1)^{2}-1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 3 \times \mathrm{B} 1 \sqrt{ } \end{aligned}$	[5]	Must be f into g , not g into f . co Allow all these as $\sqrt{ }$ for either fg or gf.
4	(i) $\begin{aligned} & \frac{\sin x \tan x}{1-\cos x}=\frac{\sin ^{2} x}{\cos x(1-\cos x)} \\ & =\frac{1-\cos ^{2} x}{\cos x(1-\cos x)} \\ & =\frac{(1-\cos x)(1+\cos x)}{\cos x(1-\cos x)}=\frac{1}{\cos x}+1 \end{aligned}$ (ii) $\begin{aligned} & \frac{1}{\cos x}+1+2=0 \\ & \rightarrow \cos x=-1 / 3 \\ & \rightarrow x=109.5^{\circ} \text { or } 250.5^{\circ} \end{aligned}$	M1 M1 M1 M1 A1 A1 $\sqrt{ }$	[3] [3]	Use of $\tan x=\sin x \div \cos x$ Use of $\sin ^{2} x=1-\cos ^{2} x$ Realising the need to use difference of 2 squares. Answer given. Uses part (i) with $\cos x$ as subject. co. $\sqrt{ }$ for $360^{\circ}-1^{\text {st }}$ answer.
5	$\begin{aligned} & \overrightarrow{A C}=-6 \mathbf{i}+10 \mathbf{k} \\ & \overrightarrow{B C}=-8 \mathbf{j}+10 \mathbf{k} \\ & \overrightarrow{A C} \cdot \overrightarrow{B C}=100 \\ & \overrightarrow{A C} \cdot \overrightarrow{B C}=\sqrt{ } 136 \sqrt{ } 164 \cos A C B \end{aligned}$ Angle $A C B=48.0^{\circ}$	B1 B1 M1 M1 M1 A1	[6]	$\begin{aligned} & \text { co (or } \overrightarrow{C A} \text {) } \\ & \text { co (or } \overrightarrow{C B} \text {) } \end{aligned}$ Must be scalar - available for any pair For modulus - available for any vector All linked correctly - for $A C B$ only co

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	11

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
(a)
\[
\begin{aligned}
\& a+4 d=18 \\
\& \frac{5}{2}(2 a+4 d)=75
\end{aligned}
\] \\
Solution
\[
\rightarrow a=12, d=11 / 2
\] \\
(b) \(a=16\) and \(a r^{3}=\frac{27}{4}\)
\[
r=\frac{3}{4}
\] \\
Sum to infinity \(=64\)
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
B1 \\
M1 A1
\end{tabular} \& [4]

[3] \& | co or $75=5 / 2(a+18) \rightarrow a=12$ etc co |
| :--- |
| Solution of sim equations co for both |
| Needs both of these |
| Correct formula and $\|r\|<1$ | \\

\hline 7 \& | $x \mapsto 3-2 \tan \left(\frac{1}{2} x\right)$ |
| :--- |
| (i) Range of $\mathrm{f} \leq 3$ |
| (ii) $\mathrm{f}\left(\frac{2}{3} \pi\right)=3-2 \sqrt{ } 3$ |
| (iii) $\text { (iv) } \begin{aligned} & y=3-2 \tan \left(\frac{x}{2}\right) \\ & \rightarrow \mathrm{f}^{-1}(x)=2 \tan ^{-1}\left(\frac{3-x}{2}\right) \end{aligned}$ | \& \& $[1]$

$[1]$
$[2]$

[3] \& | co. Allow < |
| :--- |
| co |
| Starting at $y=3$ |
| Shape correct - no turning points. Tending tangentially towards $x=\pi$ |
| Attempt at making x the subject. Order of operations all ok. |
| co - but with x, not y. | \\

\hline 8 \& | (i) $\begin{aligned} & 2 x+2 y+\frac{\pi x}{2}=60 \\ & \rightarrow y=30-x-\frac{\pi x}{4} \end{aligned}$ |
| :--- |
| (ii) $\begin{aligned} & A=x y+\frac{\pi x^{2}}{4} \\ & =x\left(30-x-\frac{\pi x}{4}\right)+\frac{\pi x^{2}}{4} \\ & =30 x-x^{2} \end{aligned}$ |
| (iii) $\begin{aligned} & \frac{\mathrm{d} A}{\mathrm{dx}}=30-2 x \\ & =0 \text { when } x=15 \mathrm{~cm} \end{aligned}$ |
| (iv) Max. | \& | A1 |
| :--- |
| M1 A1 |
| M1 A1 | \& $[2]$

$[2]$

[2]

[2] \& | Linking 60 with sum of at least 4 sides and use of radians |
| :--- |
| co |
| Subs " y " into area eqn and use $\frac{1}{2} r^{2} \theta$ co. |
| Knowing to differentiate |
| Sets differential to $0+$ solution. co. |
| Any valid method. co. | \\

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	11

\begin{tabular}{|c|c|c|c|c|}
\hline 9 \& \begin{tabular}{l}
(i) \(\begin{aligned} \& R S^{2}=10^{2}-6^{2} \\ \& \rightarrow R S=8 \mathrm{~cm} .\end{aligned}\) \\
\(\rightarrow R S=8 \mathrm{~cm}\). \\
(ii) \(\sin \theta=8 / 10\) oe \(\rightarrow\) angle \(R P Q=0.9273\) radians \\
(iii) Region = trapezium -2 sectors Area of trapezium \(=40 \mathrm{~cm}^{2}\) \\
Large sector \(=\frac{1}{2} \times 8^{2} \times 0.9273\) \\
Small sector angle \(=(\pi-0.9273)\) \\
Small sector \(=\frac{1}{2} \times 2^{2} \times 2.214\) \\
\(\rightarrow 5.90 \mathrm{~cm}^{2}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1 \\
M1 \\
M1 \\
A1
\end{tabular} \& [2]
[2]

[4] \& | Use of Pythagoras (or other) Answer given. |
| :--- |
| Use of trig - even if with degrees. co in radians. (Accept 0.927) |
| co |
| Use of $\frac{1}{2} r^{2} \theta$. |
| Use of $\frac{1}{2} r^{2} \theta$ with angle $=\pi-$ (ii) co | \\

\hline 10 \& | $y=4 x-x^{2}+3$ |
| :--- |
| (i) |
| $\frac{d y}{d x}=4-2 x$ |
| At $x=3, m=-2$ |
| Gradient of normal $=\frac{1}{2}$ |
| Eqn of normal $y-6=\frac{1}{2}(x-3)$ $\rightarrow 2 y=x+9$ |
| (ii) Meets axes at $\left(0, \frac{9}{2}\right)$ and $(-9,0)$ |
| Mid-point is $\left(\frac{-9}{2}, \frac{9}{4}\right)$ $\text { (iii) } \begin{aligned} & 2 y=x+9, y=4 x-x^{2}+3 \\ & \rightarrow 2 x^{2}-7 x+3=0 \text { oe } \\ & \rightarrow(1 / 2,43 / 4) \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| M1 A1 |
| M1 |
| A1 |
| M1 A1 |
| M1 A1 | \& [4]

[2]

[4] \& | co |
| :--- |
| Use of $m_{1} m_{2}=-1$ |
| Use of $y-k=m(x-h)$ or $y=m x+c$ (where m is gradient of normal) |
| Sets x and y to $0+$ midpoint formula. co. |
| Eliminates x completely. Correct eqn. Solution of quadratic. co | \\

\hline
\end{tabular}

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9709	11

