						970	<u>9_w10_ms_1</u>
Page 4 Mark Scheme: Tea			chers' version			Syllabus	Paper
		GCE AS/A LEVEL – Octol	ber/Noven	nber 2	r 2010 9709 11		
r	1		1	1	1		
1	$\int \left(x + \frac{1}{x}\right)^2 dx$ $= \frac{x^3}{3} - \frac{1}{x} + 2$	c dx + (c)	B1 × 3	[3]	co. Omissi can sti	ion of middle term ll get 2/3.	n of expansion
2	$(1 + ax)^{6}$ Term in x = 6 Equate with Term in x ³ =	$5ax -30 \rightarrow a = -5$ $6.5.4 a^3$	B1 B1√		co √ from	his answer for 6a	IX
	\rightarrow coefficien	3! d t of – 2500	B1√	[4]	For 20	$\times a^3$	
3	$f: x \mapsto 2x +$ $g: x \mapsto x^{2} -$ $gf(x) = (2x +$ $= 4x^{2} + 8x +$ $= 4(x + 1)^{2} -$	3, $(-2x)^{2},$ $(-3)^{2} - 2(2x + 3)^{3}$ 1	$M1 \\ A1 \\ 3 \times B1 $	[5]	Must b co Allow	be f into g, not g ir all these as √ for o	nto f. either fg or gf.
4	(i) $\frac{\sin x \tan x}{1 - \cos x}$	$\frac{n x}{s x} = \frac{\sin^2 x}{\cos x (1 - \cos x)}$	M1		Use of	$\tan x = \sin x \div \cos x$	x
	$=\frac{1-\cos x}{\cos x}$	$\frac{\cos^2 x}{(1-\cos x)}$	M1		Use of	$\sin^2 x = 1 - \cos^2 x$	
	$=\frac{(1-c)}{\cos^2}$	$\frac{\cos x(1 + \cos x)}{\sin x(1 - \cos x)} = \frac{1}{\cos x} + 1$	M1	[3]	Realisi 2 squar	ing the need to use res. Answer given	e difference of n.
	(ii) $\frac{1}{\cos x} + \frac{1}{\cos x} +$	1+2=0 = $-\frac{1}{3}$ 09.5° or 250.5°	M1 A1 A1√	[3]	Uses p co. √ fe	eart (i) with $\cos x$ at or $360^{\circ} - 1^{\text{st}}$ answ	as subject. er.
5	$\overrightarrow{AC} = -6\mathbf{i} +$	10 k	B1		co (or	\overrightarrow{CA})	
	$\overrightarrow{BC} = -8\mathbf{j} +$	10 k	B1		co (or	\overrightarrow{CB})	
	$\overrightarrow{AC}.\overrightarrow{BC} = 1$	00	M1		Must b	be scalar – availab	le for any pair
	$\overrightarrow{AC}.\overrightarrow{BC} = \sqrt{2}$	$136\sqrt{164}\cos ACB$	M1 M1		For mo All lin	odulus – available ked correctly – for	for any vector r <i>ACB</i> only
	Angle ACB =	= 48.0°	A1	[6]	со		

		970	9 w10 ms 11
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9709	11

6	(a) $a + 4d = 18$	B1		co or $75 = 5/2(a+18) \rightarrow a = 12$ etc
	$\frac{5}{2}(2a+4d) = 75$	B1		со
	Solution $\rightarrow a = 12, d = 1\frac{1}{2}$	M1 A1	[4]	Solution of sim equations co for both
	(b) $a = 16$ and $ar^3 = \frac{27}{4}$	B1		Needs both of these
	$r = -\frac{1}{4}$			
	Sum to infinity = 64	M1 A1	[3]	Correct formula and $ r < 1$
7	$x \mapsto 3 - 2\tan(\frac{1}{2}x)$ (i) Range of $f \le 3$	B1	[1]	co. Allow <
	(ii) $f(\frac{2}{3}\pi) = 3 - 2\sqrt{3}$	B1	[1]	со
	(iii)	B2, 1, 0 Indep.	[2]	Starting at $y = 3$ Shape correct – no turning points. Tending tangentially towards $x = \pi$
	(iv) $y = 3 - 2 \tan\left(\frac{x}{2}\right)$	M1 M1		Attempt at making x the subject. Order of operations all ok.
	$\rightarrow f^{-1}(x) = 2 \tan^{-1} \left(\frac{3-x}{2} \right)$	A1	[3]	co - but with x , not y .
8	(i) $2x + 2y + \frac{\pi x}{2} = 60$	M1		Linking 60 with sum of at least 4 sides and use of radians
	$\rightarrow y = 30 - x - \frac{\pi x}{4}$	A1	[2]	со
	$\textbf{(ii)} A = xy + \frac{\pi x^2}{4}$			
	$= x (30 - x - \frac{\pi x}{4}) + \frac{\pi x^2}{4}$	M1		Subs "y" into area eqn and use $\frac{1}{2}r^2\theta$
	$= 30x - x^2$	A1	[2]	co.
	(iii) $\frac{\mathrm{d}A}{\mathrm{d}x} = 30 - 2x$			Knowing to differentiate
	= 0 when $x = 15$ cm	M1 A1	[2]	Sets differential to 0 + solution. co.
	(iv) Max.	M1 A1	[2]	Any valid method. co.

9709 w10 ms 1								
Page 6 Mark Scheme: Teac			chers' version			Syllabus	Paper	
			GCE AS/A LEVEL – Octo	ber/Noven	nber 2	2010	9709	11
9	(i)	$RS^2 = 10$ $\rightarrow RS =$	$(2)^2 - 6^2$ = 8 cm.	M1 A1	[2]	Use of Answe	Pythagoras (or ot r given.	her)
	(ii)	$\sin \theta = 8$ \rightarrow angle	R/10 oe $RPQ = 0.9273$ radians	M1 A1	[2]	Use of co in ra	trig – even if with adians. (Accept 0	n degrees. .927)
	(iii)	Region = Area of Large se	= trapezium – 2 sectors trapezium = 40 cm ² ector = $\frac{1}{2} \times 8^2 \times 0.9273$	B1 M1		co Use of $\frac{1}{r^2\theta}$.		
		Small se Small se	ector angle = $(\pi - 0.9273)$ ector = $\frac{1}{2} \times 2^2 \times 2.214$	M1		Use of	$\frac{1}{2}r^2\theta$ with angle	= π – (ii)
		→ 5.90	cm ²	A1	[4]	со		
10	0 $y = 4x - x^2 + 3$							
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4$ At x = 3	4-2x, $m=-2$	B1		со		
		Gradien	t of normal = $\frac{1}{2}$	M1		Use of $m_1m_2 = -1$		
		Eqn of r $\rightarrow 2y = 1$	normal $y - 6 = \frac{1}{2}(x - 3)$ x + 9	M1 A1	[4]	Use of (where	y - k = m(x - h) m is gradient of r	or $y = mx + c$ normal)
	(ii)	Meets a	xes at $(0, \frac{9}{2})$ and $(-9, 0)$	M1		Sets <i>x</i> :	and y to $0 + midpoint provide the second second$	oint formula.
		Mid-poi	nt is $\left(\frac{-9}{2}, \frac{9}{4}\right)$	A1		co.		
	(iii)	$2y = x + \rightarrow 2x^2 - \rightarrow (\frac{1}{2}, 4)$	9, $y = 4x - x^2 + 3$ 7x + 3 = 0 oe ³ / ₄)	M1 A1 M1 A1	[2]	Elimin Solutic	ates x completely on of quadratic. co	. Correct eqn.
					[4]			

		970	9 w10 ms 11	1
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper	l
	GCE AS/A LEVEL – October/November 2010	9709	11	l

11	$y = \frac{9}{2 - x}$			
	(i) $\frac{dy}{dx} = -9(2-x)^{-2} \times -1$	B1 B1		Without the " $\times -1$ " Indep. With the " $\times -1$ ". Indep.
	$\frac{9}{\left(2-x\right)^2} \neq 0$. No turning points.	B1√	[3]	$\sqrt{\text{provided of form } k \div (2-x)^2}.$
	(ii) $V = \pi \int \frac{81}{(2-x)^2} dx$		[9]	
	$\int y^2 dx = -81(2-x)^{-1} \div (-1)$	B1 B1		Answer without the " \div -1 including π For " \div -1".
	Use of limits 0 to 1	M1		Uses both limits in an integral of y^2 – if "0" ignored, M0.
	$\rightarrow \frac{81\pi}{2}$ (or 127)	A1	[4]	co (If π omitted – max 3/4)
	(iii) $\frac{9}{2-x} = x+k$	M1		Elimination of <i>y</i>
	$\rightarrow x^{2} - 2x + kx - 2k + 9 = 0$ Uses $b - 4ac$ $\rightarrow k^{2} + 4k - 32$	M1		Uses discriminant
	\rightarrow end-points of 4 and -8	A1		End-values correct.
	Range for 2 points of intersection $\rightarrow k < -8$, $k > 4$.	A1	[4]	Accept ≤, ≥.