Cambridge International AS & A Level – Mark Scheme PUBLISHED

9709_s20_ms_61

Question	Answer	Marks
1(a)	$\frac{\Sigma x}{7} = \frac{34.7}{7} = 4.9571 \text{ or } 4.96 (3 \text{ sf})$ $(\Sigma x^2 = 175.15)$	B1
	$\frac{7}{6} \left(\frac{"175.15"}{7} - "4.9571"^2 \right)$	M1
	0.523 (3 sf)	A1
		3
1(b)	'4.96'± $z \times \sqrt{\frac{0.523}{7}}$ (FT <i>their</i> mean and standard deviation)	M1
	<i>z</i> = 1.96	B1
	4.42 to 5.49 (3 sf)	A1
		3

Question	Answer	Marks
2(a)	Assume standard deviation unchanged or standard deviation $= 0.08$	B1
	Assume yields normally distributed	B1
		2
2(b)	H ₀ : Population mean yield (or μ) = 0.56 H ₁ : Population mean yield (or μ) > 0.56	B1
	$\frac{\frac{0.61 - 0.56}{0.08}}{\frac{\sqrt{10}}{\sqrt{10}}}$	M1
	1.976	A1
	Comp 1.96	M1
	There is evidence that mean yield has increased	A1
		5

Question	Answer	Marks
3(a)	N(240, 6×1.5^2) or N(240, 13.5)	M1
	$\frac{245 - "240"}{\sqrt{"13.5"}} \ (= 1.361)$	M1
	1- $\Phi($ "1.361")	M1
	0.0867 (3 sf)	A1
		4
3(b)	Use of $L - 4S$ or similar	M1
	$\mathbf{E}(L-4S) = -8$	B1
	$Var(L-4S) = 1.5^2 + 16 \times 0.7^2$ or 10.09	B1
	$\frac{0 - ("-8")}{\sqrt{"10.09"}} (= 2.519)$	M1
	Φ("2.519")	M1
	0.994 (3 sf)	A1
		6

Question	Answer	Marks
4(a)	$(1^2+2^2+3^2+4^2+5^2) \div 5-3^2 (=2 \text{ AG})$	B1
		1
4(b)	N(3, 2)	M1
	$\frac{2.6 - "3"}{\sqrt{\frac{2}{40}}} (= -1.789)$	M1
	$\Phi(``-1.789'') = 1 - \Phi(``1.789'')$	M1
	0.0367 to 0.0368	A1
		4
4(c)	Concluding that spinner is unbiased when it is biased	B1
		1

Question	Answer	Marks
5(a)(i)	$e^{-2.9} \times \frac{2.9^4}{4!}$	M1
	0.162 (3 sf)	A1
		2
5(a)(ii)	$e^{-2.1} \times \frac{2.1^4}{4!} \times e^{-0.8} + e^{-2.1} \times \frac{2.1^3}{3!} \times e^{-0.8} \times 0.8$	B1
	(B1 for either expression correct, M1 for $P(4, 0) + P(3, 1)$)	M1
	0.113 (3 sf)	A1
		3
5(b)	N(29, 29)	M1
	$\frac{24.5 - 29}{\sqrt{29}} (= -0.83563)$	M1
	1- $\Phi(``0.836")$	M1
	0.202 (3sf)	A1
		4
5(c)	29 is large or 29 > 15	B1
		1

Cambridge International AS & A Level – Mark Scheme PUBLISHED

9709_s20_ms_61

Question	Answer	Marks
6(a)	'Tails down' parabola only from $x = 0$ to 20 shown	B1
		1
6(b)	Symmetrical	B1
		1
6(c)	$\frac{3}{4000} \int_{0}^{20} \left(20t^3 - t^4 \right) dx = \frac{3}{4000} \left[20\frac{t^4}{4} - \frac{t^5}{5} \right]_{0}^{20}$	M1
	$Var(T) = \frac{3}{4000} \times 160000 - 10^2$	M1
	20	A1
		3
6(d)	$(p-0.5) \times 2$ or $1-2(1-p)$	M1
	2p - 1	A1
		2

Cambridge International AS & A Level – Mark Scheme PUBLISHED

9709_s20_ms_61

Question	Answer	Marks
6(e)	$\frac{3}{4000}\int_{8}^{12} (20t-t^2) \mathrm{d}x$	M1
	$\frac{3}{4000} \left[20\frac{t^2}{2} - \frac{t^3}{3} \right]_{8}^{12} = \frac{3}{4000} \left(1440 - 576 - 640 + \frac{512}{3} \right)$	A1
	$\frac{37}{125}$ or 0.296	A1
		3
6(f)	Does not allow times greater than 20 minutes	B1
		1