Question	Answer	Marks
1	$\sum x - 50n = 144$	B1
	50n + 144 = 944	M1
	<i>n</i> = 16	A1
		3

Question	Answer	Marks
2(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
		1
2(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280} \text{ or } \frac{3}{7}$	A1
		2

Question	Answer	Marks			
2(c)	$P(\text{hockey}) = \frac{220}{500} = 0.44$ $P(\text{Amos or Benn}) = \frac{242}{500} = 0.484$ $P(\text{hockey} \cap \text{A or B}) = \frac{104}{500} = 0.208$	M1			
	$P(H) \times P(A \cup B) = P(H \cap (A \cup B)) \text{ if independent}$				
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1			
		2			

Question	Answer	Marks
3(a)	Median = 0.238	B1
	UQ = 0.245, LQ = 0.231, So $IQR = 0.245 - 0.231$	M1
	0.014	A1
		3

Question	Ans	wer						Marks
3(b)			LQ	М	UQ			
	А	0.220	0.231 FT	0.238 FT	0.245 FT	0.254		
	В	0.211	0.224	0.232	0.243	0.256		
	Med	lians and	quartiles co	orrectly plot	ted for A or	В		B1
End points correct for A or B						B1		
	Con	npletely c	correct, inclu	uding scale				B1
								3
3(c)	Lengths of rods produced by machine <i>A</i> are longer. (B1 for comparison of central tendency)							
Lengths of rods produced by machine <i>A</i> are less spread out (B1 for comparison of spread)							B1	
								2

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

9709_s20_ms_52

Question	Answer	Marks						
4(a)	$P(X < 25) = P\left(z < \frac{25 - 40}{12}\right) = P(z < -1.25)P(X < 25) = P(z < -1.25)P(z < -1.25)P($	M1						
	1 - 0.8944	M1						
	0.106							
		3						
4(b)	0.8944 divided by 3 (M1 for 1 - <i>their</i> (a) divided by 3)	M1						
	0.298 AG	A1						
		2						
4(c)	0.2981 gives $z = 0.53$	B1						
	$\frac{h-40}{12} = 0.53$	M1						
	<i>h</i> = 46.4	A1						
		3						

9709_s20_ms_52

Question	Answer						Marks
5(a)		1	1	2	2	3	M1
	1	1	1	2	2	3	
	2	2	2	2	2	3	
	3	3	3	3	3	3	
	$\frac{7}{15}$ AG						A1
							2
5(b)	x		1	2		3	B1
	Probabi	lity	$\frac{2}{15}$	$\frac{6}{15}$		$\frac{7}{15}$	
	P(1) or P	(2) corre	ct				B1
	3 rd proba	bility cor	rect, FT s	um to 1			B1
							3

Question	Answer	Marks
5(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$	B1
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$	M1
	$\frac{22}{45}(0.489)$	A1
		3

Question	Answer	Marks
6(a)	$\frac{8!}{3!}$	M1
	6720	A1
		2

May/June 2020

Question	Answer	Marks					
6(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1					
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1					
	Es not together = $their$ (A) – $their$ (B)	M1					
	241920	A1					
	Alternative method for question 6(b)						
	$\frac{8!}{3!} \times \frac{9 \times 8}{2}$						
8! × k in numerator, k integer \geq 1, denominator \geq 1							
$3! \times m$ in denominator, <i>m</i> integer ≥ 1							
	<i>Their</i> $\frac{8!}{3!}$ Multiplied by ${}^{9}C_{2}$ (OE) only (no additional terms)	M1					
	241920	A1					
		4					

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

Question	Answer	Marks
6(c)	Scenarios: $E M M M {}^{5}C_{0} = 1$ $E M M {}^{5}C_{1} = 5$ $E M {}^{-}_{-} {}^{5}C_{2} = 10$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total = 16	A1
		3

Question	Answer	Marks							
7(a)	$ \begin{array}{l} 1 - P(10, 11, 12) \\ = 1 - [{}^{12}C_{10}0.72^{10}0.28^2 + {}^{12}C_{11}0.72^{11}0.28^1 + 0.72^{12}] \end{array} $	M1							
	- (0.19372 + 0.09057 + 0.01941)								
	0.696	A1							
		3							
7(b)	$0.28^3 \times 0.72 = 0.0158$	B1							
		1							

Question	Answer	Marks
7(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$	M1
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$ (M1 for substituting <i>their</i> μ and σ into ±standardisation formula with a numerical value for '63.5')	M1
	Using either 63.5 or 64.5 within a ±standardisation formula	M1
	Appropriate area Φ , from standardisation formula P(z<) in final solution = P(z < -1.893)	M1
	0.0292	A1
		5