

Question		Answer	Marks
2(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112		B1
			1
2(b)	$\mathrm{P}(\mathrm{D} \mid \mathrm{S})=\frac{\mathrm{P}(\mathrm{D} \cap \mathrm{~S})}{\mathrm{P}(\mathrm{~S})}=\frac{120}{280}$		M1
	$\frac{120}{280} \text { or } \frac{3}{7}$		A1
			2

Question	Answer	Marks
2(c)	$\begin{aligned} & \mathrm{P}(\text { hockey })=\frac{220}{500}=0.44 \\ & \mathrm{P}(\text { Amos or Benn })=\frac{242}{500}=0.484 \\ & \mathrm{P}(\text { hockey } \cap \mathrm{A} \text { or } \mathrm{B})=\frac{104}{500}=0.208 \\ & \mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{~A} \mathrm{U} \mathrm{~B})=\mathrm{P}(\mathrm{H} \cap(\mathrm{~A} \text { U B })) \text { if independent } \end{aligned}$	M1
	$\frac{220}{500} \times \frac{242}{500}=\frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
$3(\mathrm{a})$	Median $=0.238$	B1
	$\mathrm{UQ}=0.245, \mathrm{LQ}=0.231$, $\mathrm{So} \mathrm{IQR}=0.245-0.231$	M1
	0.014	A1
		$\mathbf{3}$

Question	Answer	Marks
4(a)	$\mathrm{P}(X<25)=\mathrm{P}\left(z<\frac{25-40}{12}\right)=\mathrm{P}(z<-1.25) \mathrm{P}(X<25)=\mathrm{P}(z<)$	M1
	1-0.8944	M1
	0.106	A1
		3
4(b)	0.8944 divided by 3 (M1 for 1 - their (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives $z=0.53$	B1
	$\frac{h-40}{12}=0.53$	M1
	$h=46.4$	A1
		3

Question	Answer	Marks
5(c)	$\mathrm{E}(X)=\frac{2+12+21}{15}=\frac{35}{15}=\frac{7}{3}$	B1
	$\operatorname{Var}(X)=\frac{1^{2} \times 2+2^{2} \times 6+3^{2} \times 7}{15}-\left(\frac{7}{3}\right)^{2}$	M1
	$\frac{22}{45}(0.489)$	A1
		3

Question		Answer	Marks
$6(\mathrm{a})$	$\frac{8!}{3!}$		M1
	6720	A1	
			2

Question	Answer	Marks
6(b)	$\text { Total number }=\frac{10!}{2!3!}(302400) \quad(\mathrm{A})$	B1
	With Es together $=\frac{9!}{3!}(60480)$	B1
	Es not together $=$ their $(\mathrm{A})-$ their (B)	M1
	241920	A1
	Alternative method for question 6(b)	
	$-\hat{8}_{\frac{8}{3!} \times \frac{\wedge^{\wedge}}{2}}-{ }^{\wedge}-^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-$	
	$8!\times k$ in numerator, k integer ≥ 1, denominator ≥ 1	B1
	$3!\times m$ in denominator, m integer ≥ 1	B1
	Their $\frac{8!}{3!}$ Multiplied by ${ }^{9} \mathrm{C}_{2}$ (OE) only (no additional terms)	M1
	241920	A1
		4

Question	Answer	Marks
6(c)	Scenarios: $\begin{array}{ll} \text { EMM M } & { }^{5} \mathrm{C}_{0}=1 \\ \text { EM M }_{-} & { }^{5} \mathrm{C}_{1}=5 \\ \text { EM }_{--} & { }^{5} \mathrm{C}_{2}=10 \end{array}$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total $=16$	A1
		3

Question	Answer	Marks
7(a)	$\begin{aligned} & 1-\mathrm{P}(10,11,12) \\ & =1-\left[{ }^{12} \mathrm{C}_{10} 0.722^{10} 0.28^{2}+{ }^{12} \mathrm{C}_{11} 0.722^{11} 0.28^{1}+0.72^{12}\right] \end{aligned}$	M1
	$1-(0.19372+0.09057+0.01941)$	A1
	0.696	A1
		3
7(b)	$0.28^{3} \times 0.72=0.0158$	B1
		1

Question	Answer	Marks
7(c)	$\begin{aligned} & \text { Mean }=100 \times 0.72=72 \\ & \text { Var }=100 \times 0.72 \times 0.28=20.16 \end{aligned}$	M1
	$\mathrm{P}(\text { less than } 64)=\mathrm{P}\left(z<\frac{63.5-72}{\sqrt{20.16}}\right)$ (M1 for substituting their μ and σ into \pm standardisation formula with a numerical value for ' 63.5 ')	M1
	Using either 63.5 or 64.5 within a \pm standardisation formula	M1
	Appropriate area Φ, from standardisation formula $\mathrm{P}(z<\ldots)$ in final solution $=\mathrm{P}(z<-1.893)$	M1
	0.0292	A1
		5

