

Question	Answer	Marks
2(a)	$6!$	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together $=\frac{8!}{3!}(6720)$	M1
	$\begin{aligned} & \text { Number with Ls not together }=\frac{9!}{3!2!}-\frac{8!}{3!} \\ & =30240-6720 \end{aligned}$	M1
	23520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7!\times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8 \mathrm{C} 2 \times m, m$ integer ≥ 1	M1
	3 ! in denominator	M1
	23520	A1
		4

Question	Answer	Marks
4	Scenarios: 2P 3V 2G $\quad{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}=28 \times 6 \times 20=3360$ 2P 4V 1G $\quad{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{4}=28 \times 4 \times 15=1680$ 3P 3V 1G $\quad{ }^{8} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{3}=56 \times 4 \times 20=4480$ 4P 2V 1G $\quad{ }^{8} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{2}=70 \times 4 \times 15=4200$ (M1 for ${ }^{8} \mathrm{C}_{\mathrm{r}} \times{ }^{4} \mathrm{C}_{\mathrm{r}} \times{ }^{6} \mathrm{C}_{\mathrm{r}}$ with $\sum r=7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13720	A1
		4

Question	Answer	Marks
5(a)	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3+0.44 \times 0.8(+0)$	M1
	0.457	A1
		2

Question	Answer	Marks
5(c)	$\mathrm{P}(\text { not } \mathrm{B} \mid \text { not fruit })=\frac{\mathrm{P}\left(\mathrm{~B}^{\prime} \cap \mathrm{F}^{\prime}\right)}{\mathrm{P}\left(\mathrm{~F}^{\prime}\right)}$	M1
	$\frac{0.35 \times 0.7+0.21 \times 1}{1-\operatorname{their}(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 - their (b) or summing three appropriate 2-factor probabilities, correct or consistent with their tree diagram as denominator)	M1
	$0.838 \text { or } \frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$\mathrm{P}\left(\frac{50-54}{6.1}<z<\frac{60-54}{6.1}\right)=\mathrm{P}(-0.6557<Z<0.9836)$	M1
	Both values correct	A1
	$\begin{aligned} & \Phi(0.9836)-\Phi(-0.6557)=\Phi(0.9836)+\Phi(0.6557)-1 \\ & =0.8375+0.7441-1 \\ & \text { (Correct area) } \end{aligned}$	M1
	0.582	A1
		4

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma}=-0.994$	B1
	$\frac{56-\mu}{\sigma}=1.372$	B1
	One appropriate standardisation equation with μ, σ, z-value (not probability) and 45 or 56.	M1
	$11=2.366 \sigma$ (M1 for correct algebraic elimination of μ or σ from their two simultaneous equations to form an equation in one variable)	M1
	$\sigma=4.65, \mu=49.6$	A1
		5

Question	Answer	Marks
7(a)	Class widths: $10,5,15,20,10$	M1
	Frequency density $=$ frequency $/$ their class width: $1.8,4.8,2,1,0.8$	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: $10.5,15.5,30.5,50.5,60.5$	B1
		5
7(b)	$11-15$ and $31-50$	B1
	Greatest $\mathrm{IQR}=50-11=39$	B1
		2
7(c)	$\text { Mean }=\frac{18 \times 5.5+24 \times 13+30 \times 23+20 \times 40.5+8 \times 55.5}{100}=\frac{2355}{100}=23.6$	B1
	$\operatorname{Var}=\frac{18 \times 5.5^{2}+24 \times 13^{2}+30 \times 23^{2}+20 \times 40.5^{2}+8 \times 55.5^{2}}{100}-\text { mean }^{2}$	M1
	$\frac{77917.5}{100}-\text { mean }^{2}=224.57$	A1
	Standard deviation $=15.0$ (FT their variance)	A1 FT
		4

