Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

Question	Answer	Marks
1(a)	Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	B1
		1
1(b)	$Mean = \frac{1}{\frac{1}{12}} = 12$	B1
		1
1(c)	$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
		1
1(d)	$1 - \left(\frac{11}{12}\right)^7$	M1
	0.456 or $\frac{16344637}{35831808}$	A1
		2

Question	Answer	Marks
2(a)	6!	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together = $\frac{8!}{3!}$ (6720)	M1
	Number with Ls not together = $\frac{9!}{3!2!} - \frac{8!}{3!}$ = 30 240 - 6720	M1
	23 520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7! \times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, <i>m</i> integer ≥ 1	M1
	3! in denominator	M1
	23 520	A1
		4

97	0	9	s2	0	ms	51

Question	Answer						Marks
3(a)	x	0	1	2	3		B1
	Probability	$\frac{1}{56}$	$\frac{15}{56}$	$\frac{30}{56}$	$\frac{10}{56}$		
	(B1 for probab	oility distributi	on table with c	orrect outcom	e values)		
	$P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} = \frac{1}{56}$ $P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3 = \frac{15}{56}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \times 3 = \frac{30}{56}$ $P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} = \frac{10}{56}$ (M1 for denominator 8×7×6)						M1
	Any one probability correct (with correct outcome)						A1
	All probabiliti	es correct					A1
							4
3(b)	1 – P(8, 9, 10)	$= 1 - \left[{}^{10}C_8 0 \right]$	$64^80.36^2 + {}^{10}C$	$90.64^{9}0.36^{1} +$	0.64^{10}		M1
	1-(0.164156	+ 0.064852 + 0).11529)				M1
	0.759						
							3

Cambridge International AS & A Level – Mark Scheme PUBLISHED

<u>9709_s20_ms_</u>51

Question	Answer	Marks
4	Scenarios: 2P 3V 2G ${}^{8}C_{2} \times {}^{4}C_{2} \times {}^{6}C_{3} = 28 \times 6 \times 20 = 3360$ 2P 4V 1G ${}^{8}C_{2} \times {}^{4}C_{1} \times {}^{6}C_{4} = 28 \times 4 \times 15 = 1680$ 3P 3V 1G ${}^{8}C_{3} \times {}^{4}C_{1} \times {}^{6}C_{3} = 56 \times 4 \times 20 = 4480$ 4P 2V 1G ${}^{8}C_{4} \times {}^{4}C_{1} \times {}^{6}C_{2} = 70 \times 4 \times 15 = 4200$ (M1 for ${}^{8}C_{r} \times {}^{4}C_{r} \times {}^{6}C_{r}$ with $\sum r = 7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13 720	A1
		4

Question	Answer	Marks
5(a)	$ \begin{array}{c} 0.3 \\ 0.35 \\ 0.44 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.2 $	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
5(b)	$0.35 \times 0.3 + 0.44 \times 0.8 (+0)$	M1
	0.457	A1
		2

May/June 2020

Question	Answer	Marks
5(c)	$P(\text{not }B \text{not fruit}) = \frac{P(B' \cap F')}{P(F')}$	M1
	$\frac{0.35 \times 0.7 + 0.21 \times 1}{1 - their(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 – <i>their</i> (b) or summing three appropriate 2-factor probabilities, correct or consistent with <i>their</i> tree diagram as denominator)	M1
	0.838 or $\frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$P\left(\frac{50-54}{6.1} < z < \frac{60-54}{6.1}\right) = P\left(-0.6557 < Z < 0.9836\right)$	M1
	Both values correct	A1
	$\Phi (0.9836) - \Phi (-0.6557) = \Phi (0.9836) + \Phi (0.6557) - 1$ = 0.8375 + 0.7441 - 1 (Correct area)	M1
	0.582	A1
		4

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma} = -0.994$	B1
	$\frac{56-\mu}{\sigma} = 1.372$	B1
	One appropriate standardisation equation with μ , σ , z-value (not probability) and 45 or 56.	M1
	11 = 2.366 σ (M1 for correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable)	M1
	$\sigma = 4.65, \mu = 49.6$	A1
		5

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

Question	Answer	Marks
7(a)	Class widths: 10, 5, 15, 20, 10	M1
	Frequency density = frequency/ <i>their</i> class width: 1.8, 4.8, 2, 1, 0.8	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: 10.5, 15.5, 30.5, 50.5, 60.5	B1
		5
7(b)	11-15 and 31-50	B1
	Greatest $IQR = 50 - 11 = 39$	B1
		2
7(c)	Mean = $\frac{18 \times 5.5 + 24 \times 13 + 30 \times 23 + 20 \times 40.5 + 8 \times 55.5}{100} = \frac{2355}{100} = 23.6$	B1
	$Var = \frac{18 \times 5.5^2 + 24 \times 13^2 + 30 \times 23^2 + 20 \times 40.5^2 + 8 \times 55.5^2}{100} - mean^2$	M1
	$\frac{77917.5}{100} - \text{mean}^2 = 224.57$	A1
	Standard deviation = 15.0 (FT <i>their</i> variance)	A1 FT
		4