Question	Answer	Marks
1	Resultant $=100-2 \times 50 \cos \alpha$	M1
	20 N	A1
	Direction is to the left (or equivalent)	B1
		3

Question	Answer	Marks
2(a)	$[T-100=400 \times 1.5]$	M1
	$T=700 \mathrm{~N}$	A1
		2
2(b)	$F-250-100=2200 \times 1.5(F=3650 \mathrm{~N})$ (M1 for using Newton's second law for the system or for the car using the result from 2(a))	M1
	For use of power $=F v$	M1
	73000 W or 73 kW	A1
		3

Question	Answer	Marks
3(a)	$0=5^{2}-2 g s$	M1
	$s=1.25$	A1
	[Height above ground $=$] 4.05 m	A1
		3
3(b)	Use of $s=u t+1 / 2 a t^{2}$	M1
	$0.8=5 t-5 t^{2}$	A1
	$t=0.2$ or 0.8	M1
	Length of time $=0.6 \mathrm{~s}$	A1
		4

Question	Answer	Marks
4(a)	Resolving forces in either direction	M1
	$R=T \sin 30+0.1 g, F=T \cos 30$	A1
	$T \cos 30=0.8(T \sin 30+0.1 g)$	M1
	$T=1.72$ (1.7166...)	A1
		4
4(b)	$R=3 \sin 30+0.1 g$	B1
	$3 \cos 30-0.8(3 \sin 30+0.1 g)=0.1 a$	M1
	$a=5.98 \mathrm{~ms}^{-2}(5.9807 \ldots$)	A1
		3

Question	Answer	Marks
5(a)	Attempt at finding PE lost	M1
	PE lost $=35 \mathrm{~g}(4 \cos 22.5-4 \cos 45)$	A1
	$\frac{1}{2} \times 35 v^{2}=35 g(4 \cos 22.5-4 \cos 45)$	M1
	Speed $=4.16 \mathrm{~ms}^{-1}(4.1643 \ldots)$	A1
		4
5(b)	Use of the work-energy equation in the form: PE lost $=$ KE gain + WD against resistance	M1
	$\frac{1}{2} \times 35 \times 4^{2}=35 g(4-4 \cos 45)-X$	A1
	$X=130$ (130.05 ...)	A1
		3

Question	Answer	Marks
7(a)	$0.3 g \sin 30=0.3 a(a=5)$ (M1 for applying Newton's second law parallel to the plane)	M1
	$v^{2}=0+2 \times 2.5 \times a$	M1
	$v=5$	A1
	$0.3 \times 5+0=0.3 \times 2+0.2 w$	M1
	Velocity of $Q=4.5 \mathrm{~ms}^{-1}$	A1
		5

