Question	Answer	Marks
1	Resultant = $100 - 2 \times 50 \cos \alpha$	M1
	20 N	A1
	Direction is to the left (or equivalent)	B1
		3

Question	Answer	Marks
2(a)	$[T - 100 = 400 \times 1.5]$	M1
	T = 700 N	A1
		2
2(b)	$F-250-100 = 2200 \times 1.5 \ (F = 3650 \text{ N})$ (M1 for using Newton's second law for the system or for the car using the result from 2(a))	M1
	For use of power $=Fv$	M1
	73 000 W or 73 kW	A1
		3

Question	Answer	Marks
3(a)	$0 = 5^2 - 2gs$	M1
	<i>s</i> = 1.25	A1
	[Height above ground =] 4.05 m	A1
		3
3(b)	Use of $s = ut + \frac{1}{2} at^2$	M1
	$0.8 = 5t - 5t^2$	A1
	t = 0.2 or 0.8	M1
	Length of time = 0.6 s	A1
		4

Question	Answer	Marks
4(a)	Resolving forces in either direction	M1
	$R = T\sin 30 + 0.1g, F = T\cos 30$	A1
	$T\cos 30 = 0.8 (T\sin 30 + 0.1g)$	M1
	T = 1.72 (1.7166)	A1
		4
4(b)	$R = 3\sin 30 + 0.1g$	B1
	$3\cos 30 - 0.8(3\sin 30 + 0.1g) = 0.1a$	M1
	$a = 5.98 \text{ ms}^{-2} (5.9807)$	A1
		3

Question	Answer	Marks
5(a)	Attempt at finding PE lost	M1
	PE lost = $35g (4\cos 22.5 - 4\cos 45)$	A1
	$\frac{1}{2} \times 35v^2 = 35g \left(4\cos 22.5 - 4\cos 45\right)$	M1
	Speed = $4.16 \text{ ms}^{-1} (4.1643)$	A1
		4
5(b)	Use of the work-energy equation in the form: PE lost = KE gain + WD against resistance	M1
	$\frac{1}{2} \times 35 \times 4^2 = 35g \left(4 - 4\cos 45\right) - X$	A1
	<i>X</i> =130 (130.05)	A1
		3

9709/41

Cambridge International AS & A Level – Mark Scheme PUBLISHED

<u>9709_s20_ms_</u>41

Question	Answer	Marks
6(a)	$\int k \left(t^2 - 10t + 21 \right) \mathrm{d}t$	M1
	$s = k \left(\frac{1}{3}t^3 + 5t^2 + 21t \right) + C$	A1
	$2.85 = k \left(\frac{1}{3} \times 3^3 - 5 \times 3^2 + 21 \times 3\right) + C \text{ or } 2.4 = k \left(\frac{1}{3} \times 6^3 - 5 \times 6^2 + 21 \times 6\right) + C$	M1
	2.85 = 27k + C, 2.4 = 18k + C (A1 for both)	A1
	Solving for <i>k</i>	M1
	<i>k</i> = 0.05	A1
	$s = 0.05 \left(\frac{1}{3}t^3 - 5t^2 + 21t\right) + 1.5$	A1
		7
6(b)	Differentiating <i>v</i> or completing the square for <i>v</i>	M1
	a = 0.05(2t - 10)	A1
	Min value of v is at $t = 5$.	M1
	Displacement at $t = 5$ is 2.58 m (2.5833)	A1
		4

Question	Answer	Marks
7(a)	$\begin{array}{l} 0.3g \sin 30 = 0.3a \ (a = 5) \\ (M1 \ \text{for applying Newton's second law parallel to the plane}) \end{array}$	M1
	$v^2 = 0 + 2 \times 2.5 \times a$	M1
	v = 5	A1
	$0.3 \times 5 + 0 = 0.3 \times 2 + 0.2 w$	M1
	Velocity of $Q = 4.5 \text{ ms}^{-1}$	A1
		5

9709/41

Question	Answer	Marks
7(b)	$0.3 \times z + 0 = 0.5 \times 1.2$	M1
	Velocity of <i>P</i> before collision $z = 2$	A1
	Friction force on <i>P</i> after reaches horizontal plane $F = \mu \times 0.3 g$	B1
	$\mu \times 0.3g \times 1.5 = \frac{1}{2} \times 0.3 \times 5^2 - \frac{1}{2} \times 0.3 \times 2^2$	M1
	Coefficient $\mu = 0.7$	A1
	Alternative method for question 7(b)	
	$0.3 \times z + 0 = 0.5 \times 1.2$	M1
	Velocity of P before collision $z = 2$	A1
	Friction force on <i>P</i> after reaches horizontal plane $F = \mu \times 0.3 g$	B1
	$a = (5^2 - 2^2) / (2 \times 1.5) = 7, F = 0.3 \times 7$	M1
	Coefficient $\mu = 0.7$	A1
		5