Question	Answer	Marks
1	State or imply non-modular inequality $(2x-1)^2 > 3^2(x+2)^2$, or corresponding quadratic equation, or pair of linear equations	B1
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1
	Obtain critical values $x = -7$ and $x = -1$	A1
	State final answer $-7 < x < -1$	A1
	Alternative method for question 1	
	Obtain critical value $x = -1$ from a graphical method, or by solving a linear equation or linear inequality	B1
	Obtain critical value $x = -7$ similarly	B2
	State final answer $-7 < x < -1$ [Do not condone \leq for $<$ in the final answer.]	B1
		4

9709/33

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2020

	PUBLISHED	9709_s20_ms_33
Question	Answer	Marks
2	Commence integration and reach $a(2-x)e^{-2x} + b\int e^{-2x} dx$, or equivalent	M1*
	Obtain $-\frac{1}{2}(2-x)e^{-2x} - \frac{1}{2}\int e^{-2x} dx$, or equivalent	A1
	Complete integration and obtain $-\frac{1}{2}(2-x)e^{-2x} + \frac{1}{4}e^{-2x}$, or equivalent	A1
	Use limits correctly, having integrated twice	DM1
	Obtain answer $\frac{1}{4}(3-e^{-2})$, or exact equivalent	A1
		5

Question	Answer	Marks
3(a)	Remove logarithms correctly and state $1 + e^{-x} = e^{-2x}$, or equivalent	B1
	Show equation is $u^2 + u - 1 = 0$, where $u = e^x$, or equivalent	B1
		2
3(b)	Solve a 3-term quadratic for <i>u</i>	M1
	Obtain root $\frac{1}{2}(-1+\sqrt{5})$, or decimal in [0.61, 0.62]	A1
	Use correct method for finding x from a positive root	M1
	Obtain answer $x = -0.481$ only	A1
		4

Question	Answer	Marks
4(a)	Use the product rule	M1
	State or imply derivative of $\tan^{-1}(\frac{1}{2}x)$ is of the form $k/(4 + x^2)$, where $k = 2$ or 4, or equivalent	M1
	Obtain correct derivative in any form, e.g. $\tan^{-1}\left(\frac{1}{2}x\right) + \frac{2x}{x^2 + 4}$, or equivalent	A1
		3
4(b)	State or imply <i>y</i> -coordinate is $\frac{1}{2}\pi$	B1
	Carry out a complete method for finding <i>p</i> , e.g. by obtaining the equation of the tangent and setting $x = 0$, or by equating the gradient at $x = 2$ to $\frac{\frac{1}{2}\pi - p}{2}$	M1
	Obtain answer $p = -1$	A1
		3

Question	Answer	Marks
5	Use tan 2 <i>A</i> formula to express RHS in terms of tan θ	M1
	Use tan $(A \pm B)$ formula to express LHS in terms of tan θ	M1
	Using $\tan 45^\circ = 1$, obtain a correct horizontal equation in any form	A1
	Reduce equation to $2\tan^2\theta + \tan\theta - 1 = 0$	A1
	Solve a 3-term quadratic and find a value of θ	M1
	Obtain answer $\theta = 26.6^{\circ}$ and no other	A1
		6

9709/33

Question	Answer	Marks
6(a)	Sketch a relevant graph, e.g. $y = x^5$	B1
	Sketch a second relevant graph, e.g. $y = x + 2$ and justify the given statement	B1
		2
6(b)	State a suitable equation, e.g. $x = \frac{4x^5 + 2}{5x^4 - 1}$	B1
	Rearrange this as $x^5 = 2 + x$ or commence working <i>vice versa</i>	B1
		2
6(c)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.267	A1
	Show sufficient iterations to 5 d.p. to justify 1.267 to 3 d.p., or show there is a sign change in the interval (1.2665, 1.2675)	A1
		3

9709/33

Question	Answer	Marks
7(a)	State or imply the form $\frac{A}{2x-1} + \frac{B}{2x+1}$ and use a relevant method to find A or B	M1
	Obtain A = 1, B = -1	A1
		2
7(b)	Square the result of part (a) and substitute the fractions of part (a)	M1
	Obtain the given answer correctly	A1
		2
7(c)	Integrate and obtain $-\frac{1}{2(2x-1)} - \frac{1}{2}\ln(2x-1) + \frac{1}{2}\ln(2x+1) - \frac{1}{2(2x+1)}$, or equivalent	B3 , 2, 1, 0
	Substitute limits correctly	M1
	Obtain the given answer correctly	A1
		5

Question	Answer	Marks
8(a)	State or imply \overrightarrow{AB} or \overrightarrow{AD} in component form	B1
	Use a correct method for finding the position vector of <i>C</i>	M1
	Obtain answer $4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, or equivalent	A1
	Using the correct process for the moduli, compare lengths of a pair of adjacent sides, e.g. AB and AD	M1
	Show that <i>ABCD</i> has a pair of unequal adjacent sides	A1
	Alternative method for question 8(a)	
	State or imply \overrightarrow{AB} or \overrightarrow{AD} in component form	B1
	Use a correct method for finding the position vector of <i>C</i>	M1
	Obtain answer $4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, or equivalent	A1
	Use the correct process to calculate the scalar product of \overrightarrow{AC} and \overrightarrow{BD} , or equivalent	M1
	Show that the diagonals of <i>ABCD</i> are not perpendicular	A1
		5
8(b)	Use the correct process to calculate the scalar product of a pair of relevant vectors, e.g. \overrightarrow{AB} and \overrightarrow{AD}	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli of the two vectors and evaluate the inverse cosine of the result	M1
	Obtain answer 100.3°	A1
		3

a,			
	Question	Answer	Marks
	8(c)	Use a correct method to calculate the area, e.g. calculate <i>AB.AC</i> sin <i>BAD</i>	M1
		Obtain answer 11.0 (FT on angle BAD)	A1 FT
			2

Question	Answer	Marks
9(a)	Eliminate <i>u</i> or <i>w</i> and obtain an equation <i>w</i> or <i>u</i>	M1
	Obtain a quadratic in u or w, e.g. $u^2 - 2iu - 6 = 0$ or $w^2 + 2iw - 6 = 0$	A1
	Solve a 3-term quadratic for <i>u</i> or for <i>w</i>	M1
	Obtain answer $u = \sqrt{5} + i$, $w = \sqrt{5} - i$	A1
	Obtain answer $u = -\sqrt{5} + i$, $w = -\sqrt{5} - i$	A1
		5
9(b)	Show the point representing 2 + 2i	B1
	Show a circle with centre $2 + 2i$ and radius 2 (FT is on the position of $2 + 2i$)	B1 FT
	Show half-line from origin at 45° to the positive <i>x</i> -axis	B1
	Show line for Re $z = 3$	B1
	Shade the correct region	B1
		5

May/June 2020

9709 s20 ms 33

Question	Answer	Marks
10(a)	State or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$	B1
	State or imply $\frac{dV}{dh} = 2\pi rh - \pi h^2$, or equivalent	B1
	Use $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$	M1
	Obtain the given answer correctly	A1
		4
10(b)	Separate variables and attempt integration of at least one side	M1
	Obtain terms $\frac{4}{3}rh^{\frac{3}{2}} - \frac{2}{5}h^{\frac{5}{2}}$ and $-Bt$	A3, 2, 1, 0
	Use $t = 0$, $h = r$ to find a constant of integration c	M1
	Use $t = 14$, $h = 0$ to find B	M1
	Obtain correct <i>c</i> and <i>B</i> , e.g. $c = \frac{14}{15}r^{\frac{5}{2}}, B = \frac{1}{15}r^{\frac{5}{2}}$	A1
	Obtain final answer $t = 14 - 20\left(\frac{h}{r}\right)^{\frac{3}{2}} + 6\left(\frac{h}{r}\right)^{\frac{5}{2}}$, or equivalent	A1
		8