Question	Answer	Marks
1	$3x^2 + 2x + 4 = mx + 1 \rightarrow 3x^2 + x(2 - m) + 3 (= 0)$	B1
	$(2-m)^2 - 36$ SOI	M1
	(m+4)(m-8) (>/= 0) or 2 - m >/= 6 and 2 - m = -6 OE</td <td>A1</td>	A1
	m < -4, m > 8 WWW	A1
	Alternative method for question 1	
	$\frac{dy}{dx} = 6x + 2 \to m = 6x + 2 \to 3x^2 + 2x + 4 = (6x + 2)x + 1$	M1
	$x = \pm 1$	A1
	$m = \pm 6 + 2 \rightarrow m = 8 \text{ or } -4$	A1
	m < -4, m > 8 WWW	A1
		4

Question	Answer	Marks
2	$(y) = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$	B1 B1
	7 = 16 - 12 + c (M1 for subsituting $x = 4$, $y = 7$ into <i>their</i> integrated expansion)	M1
	$y = 2x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 3$	A1
		4

Question	Answer	Marks
3(a)	(y) = f(-x)	B1
		1
3(b)	(y) = 2f(x)	B1
		1
3(c)	(y) = f(x+4) - 3	B1 B1
		2

Question	Answer	Marks
4(a)	$1+5a+10a^2+10a^3+$	B1
		1
4(b)	$1+5(x+x^2)+10(x+x^2)^2+10(x+x^2)^3+$ SOI	M1
	$1+5(x+x^2)+10(x^2+2x^3+)+10(x^3+)+$ SOI	A1
	$1+5x+15x^2+30x^3+$	A1
		3

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

<u>9709_s20_ms_</u>13

Question	Answer	Marks
5	$\cos POA = \frac{5}{13} \rightarrow POA = 1.17(6)$ Allow 67.4° or $\sin = \frac{12}{13}$ or $\tan = \frac{12}{5}$	M1 A1
	Reflex $AOB = 2\pi - 2 \times their \ 1.17(6)$ OE in degrees or minor arc AB = $5 \times 2 \times their \ 1.17(6)$	M1
	Major arc = $5 \times their 3.93(1)$ or $2\pi \times 5$ - their 11.7(6)	M1
	$AP (\text{or } BP) = \sqrt{13^2 - 5^2} = 12$	B1
	Cord length = 43.7	A1
		6

Question	Answer	Marks
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(5x-1)^{-1/2}\right] \times [5]$	B1 B1
	Use $\frac{dy}{dt} = 2 \times \left(their \frac{dy}{dx} \text{ when } x = 1 \right)$	M1
	$\frac{5}{2}$	A1
		4

Question	Answer	Marks
6(b)	$2 \times their \frac{5}{2} (5x-1)^{-1/2} = \frac{5}{8}$ oe	M1
	$(5x-1)^{1/2} = 8$	A1
	<i>x</i> = 13	A1
		3

Question	Answer	Marks
7(a)	$\frac{\tan\theta}{\tan\theta} + \frac{\tan\theta}{\tan\theta} = \frac{\tan\theta(1-\cos\theta) + \tan\theta(1+\cos\theta)}{2\pi}$	M1
	$\frac{1+\cos\theta}{1-\cos^2\theta} = \frac{1-\cos^2\theta}{1-\cos^2\theta}$	
	$=\frac{2\tan\theta}{\sin^2\theta}$	M1
	sin θ	
	$=\frac{2\sin\theta}{\cos\theta\sin^2\theta}$	M1
	$=\frac{2}{\sin\theta\cos\theta} \mathbf{AG}$	A1
		4

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

9709_s20_ms_13

Question	Answer	Marks
7(b)	$\frac{2}{\sin\theta\cos\theta} = \frac{6\cos\theta}{\sin\theta}$	M1
	$\cos^2\theta = \frac{1}{3} \rightarrow \cos\theta = (\pm)0.5774$	A1
	54.7°, 125.3° (FT for 180° – 1st solution)	A1 A1FT
		4

Question	Answer	Marks
8(a)	$r = \cos^2 \theta$ SOI	M1
	$S_{\infty} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$	M1
	1	A1
		3
8(b)(i)	$d = \sin^2 \theta \cos^2 \theta - \sin^2 \theta$	M1
	$\sin^2\theta(\cos^2\theta-1)$	M1
	$-\sin^4 heta$	A1
		3

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

	PUBLISHED 9709_	s20_ms_	_13
Question	Answer	Marks	
8(b)(ii)	Use of $S_{16} = \frac{16}{2} [2a + 15d]$	M1	
	With <u>both</u> $a = \frac{3}{4}$ and $d = -\frac{9}{16}$	A1	
	$S_{16} = -55\frac{1}{2}$	A1	
		3	

Question	Answer	Marks
9(a)	$\left[\left(x-2\right)^2\right]\left[-1\right]$	B1 B1
		2
9(b)	Smallest $c = 2$ (FT on <i>their</i> part (a))	B1FT
		1
9(c)	$y = (x-2)^2 - 1 \rightarrow (x-2)^2 = y + 1$	*M1
	$x = 2(\pm)\sqrt{y+1}$	DM1
	$(f^{-1}(x)) = 2 + \sqrt{x+1} \text{ for } x > 8$	A1
		3

Question	Answer	Marks
9(d)	$gf(x) = \frac{1}{(x-2)^2 - 1 + 1} = \frac{1}{(x-2)^2} OE$	B1
	Range of gf is $0 < gf(x) < \frac{1}{9}$	B1 B1
		3

Question	Answer	Marks
10(a)	Mid-point is (-1, 7)	B1
	Gradient, m , of AB is $8/12$ OE	B1
	$y - 7 = -\frac{12}{8}(x+1)$	M1
	3x + 2y = 11 AG	A1
		4
10(b)	Solve simultaneously $12x - 5y = 70$ and <i>their</i> $3x + 2y = 11$	M1
	x = 5, y = -2	A1
	Attempt to find distance between <i>their</i> $(5, -2)$ and either $(-7,3)$ or $(5, 11)$	M1
	$(r) = \sqrt{12^2 + 5^2}$ or $\sqrt{13^2 + 0} = 13$	A1
	Equation of circle is $(x-5)^2 + (y+2)^2 = 169$	A1
		5

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

	PUBLISHED 9	709_s20_ms_13
Question	Answer	Marks
11(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
	$3x^2 - 4bx + b^2 = 0 \rightarrow (3x - b)(x - b) (= 0)$	M1
	$x = \frac{b}{3}$ or b	A1
	$a = \frac{b}{3} \rightarrow b = 3a$ AG	A1
	Alternative method for question 11(a)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
	Sub $b = 3a$ & obtain $\frac{dy}{dx} = 0$ when $x = a$ and when $x = 3a$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 12a$	A1
	< 0 Max at $x = a$ and > 0 Min at $x = 3a$. Hence $b = 3a$ AG	A1
		4

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

	PUBLISHED 9709_	s20_ms	_13
Question	Answer	Marks	
11(b)	Area under curve = $\int (x^3 - 6ax^2 + 9a^2x) dx$	M1	
	$\frac{x^4}{4} - 2ax^3 + \frac{9a^2x^2}{2}$	B2,1,0	
	$\frac{a^4}{4} - 2a^4 + \frac{9a^4}{2} \left(= \frac{11a^4}{4} \right)$ (M1 for applying limits $0 \rightarrow a$)	M1	
	When $x = a$, $y = a^3 - 6a^3 + 9a^3 = 4a^3$	B1	
	Area under line = $\frac{1}{2}a \times their 4a^3$	M1	
	Shaded area = $\frac{11a^4}{4} - 2a^4 = \frac{3}{4}a^4$	A1	
		7	