Question	Answer	Marks
1(a)	$(2+3 x)\left(x-\frac{2}{x}\right)^{6}$ Term in x^{2} in $\left(x-\frac{2}{x}\right)^{6}=15 x^{4} \times\left(\frac{-2}{x}\right)^{2}$	B1
	Coefficient $=60$	B1
		2
1(b)	Constant term in $\left(x-\frac{2}{x}\right)^{6}=20 x^{3} \times\left(\frac{-2}{x}\right)^{3}(-160)$	B2, 1
	Coefficient of x^{2} in $(2+3 x)\left(x-\frac{2}{x}\right)^{6}=120-480=-360$	B1FT
		3

Question	Answer	Marks
2(a)	$3 \cos \theta=8 \tan \theta \rightarrow 3 \cos \theta=\frac{8 \sin \theta}{\cos \theta}$	M1
	$3\left(1-\sin ^{2} \theta\right)=8 \sin \theta$	M1
	$3 \sin ^{2} \theta+8 \sin \theta-3=0$	A1
		3
2(b)	$(3 \sin \theta-1)(\sin \theta+3)=0 \rightarrow \sin \theta=1 / 3$	M1
	$\theta=19.5{ }^{\circ}$	A1
		2

Question	Answer	Marks
3(a)	Volume after $30 \mathrm{~s}=18000 \quad \frac{4}{3} \pi r^{3}=18000$	M1
	$r=16.3 \mathrm{~cm}$	A1
		2
3(b)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$	B1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{600}{4 \pi r^{2}}$	M1
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.181 \mathrm{~cm} \text { per second }$	A1
		3

Question	Answer	Marks
4	1 st term is $-6,2 n d$ term is -4.5 $(\mathbf{M 1}$ for using k th terms to find both a and $d)$	M1
	$\rightarrow a=-6, d=1.5$	A1 A1
	$S_{n}=84 \rightarrow 3 n^{2}-27 n-336=0$	M1
	Solution $n=16$	$\mathbf{A 1}$
		$\mathbf{5}$

Question	Answer	Marks
6(a)	$2 x^{2}+k x+k-1=2 x+3 \rightarrow 2 x^{2}+(k-2) x+k-4=0$	M1
	Use of $b^{2}-4 a c=0 \rightarrow(k-2)^{2}=8(k-4)$	M1
	$k=6$	A1
		3
6(b)	$\begin{aligned} & 2 x^{2}+2 x+1=2\left(x+\frac{1}{2}\right)^{2}+1-\frac{1}{2} \\ & a=\frac{1}{2}, b=\frac{1}{2} \end{aligned}$	B1 B1
	vertex $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (FT on a and b values)	B1FT
		3

Question	Answer	Marks
7(a)	$B C^{2}=r^{2}+4 r^{2}-2 r .2 r \times \cos \left(\frac{\pi}{6}\right)=5 r^{2}-2 r^{2} \sqrt{ } 3$	M1
	$B C=r \sqrt{(5-2 \sqrt{3})}$	A1
		2
7(b)	Perimeter $=\frac{2 \pi r}{6}+r+r \sqrt{(5-2 \sqrt{3})}$	M1 A1
		2
7(c)	Area $=$ sector - triangle	
	Sector area $=\frac{1}{2} 4 r^{2} \frac{\pi}{6}$	M1
	Triangle area $=1 / 2 r .2 r \sin \frac{\pi}{6}$	M1
	Shaded area $=r^{2}\left(\frac{\pi}{3}-\frac{1}{2}\right)$	A1
		3

Question	Answer	Marks
8(a)	$\text { Volume }=\pi \int x^{2} \mathrm{~d} y=\pi \int \frac{36}{y^{2}} \mathrm{~d} y$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly $\rightarrow(12 \pi)$	DM1
	Vol of cylinder $=\pi .1^{2} .4$ or $\int 1^{2} . \mathrm{d} y \quad=[y]$ from 2 to 6	M1
	$\mathrm{Vol}=12 \pi-4 \pi=8 \pi$	A1
		5
8(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6}{x^{2}}$	B1
	$\frac{-6}{x^{2}}=-2 \rightarrow x=\sqrt{3}$	M1
	$y=\frac{6}{\sqrt{3}}=2 \sqrt{3} \quad \text { Lies on } y=2 x$	A1
		3

Question	Answer	Marks
9(a)	$\mathrm{f}(x)$ from -1 to 5	B1B1
	$\begin{aligned} & \mathrm{g}(x) \text { from }-10 \text { to } 2 \\ & (\mathbf{F T} \text { from part (a)) } \end{aligned}$	B1FT
		3
9(b)		B2, 1
		2
9(c)	Reflect in x-axis	B1
	Stretch by factor 2 in the y direction	B1
	Translation by $-\pi$ in the x direction OR translation by $\binom{0}{-\pi}$.	B1
		3

Question	Answer	Marks
10(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=54-6(2 x-7)^{2}$	B2,1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-24(2 x-7)$ (FT only for omission of ' $\times 2$ ' from the bracket)	B2,1 FT
		4
10(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow(2 x-7)^{2}=9$	M1
	$x=5, y=243$ or $x=2, y=135$	A1 A1
		3
10(c)	$x=5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-72 \rightarrow \text { Maximum }$ (FT only for omission of ' $\times 2$ ' from the bracket)	B1FT
	$x=2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=72 \rightarrow \text { Minimum }$ (FT only for omission of ' $\times 2$ ' from the bracket)	B1FT
		2

Question	Answer	Marks
11(a)	Express as $(x-4)^{2}+(y+2)^{2}=16+4+5$	M1
	Centre $C(4,-2)$	A1
	Radius $=\sqrt{25}=5$	A1
		3
11(b)	$P(1,2)$ to $C(4,-2)$ has gradient $-\frac{4}{3}$ (FT on coordinates of C)	B1FT
	Tangent at P has gradient $=\frac{3}{4}$	M1
	Equation is $y-2=\frac{3}{4}(x-1)$ or $4 y=3 x+5$	A1
		3
11(c)	Q has the same coordinate as $P y=2$	B1
	Q is as far to the right of C as $P x=3+3+1=7 Q(7,2)$	B1
		2

Question	Answer	Marks
$11(\mathrm{~d})$	Gradient of tangent at $Q=-\frac{3}{4}$ by symmetry (FT from part $(\mathbf{b}))$	B1FT
	Eqn of tangent at Q is $y-2=-\frac{3}{4}(x-7)$ or $4 y+3 x=29$	M1
	$T\left(4, \frac{17}{4}\right)$	$\mathbf{A 1}$
		$\mathbf{3}$

