Question	Answer	 Marks
1(a)	$(2+3x)\left(x-\frac{2}{x}\right)^6$	B1
	$(2+3x)(x-\frac{2}{x})^{6}$ Term in x^{2} in $(x-\frac{2}{x})^{6} = 15x^{4} \times \left(\frac{-2}{x}\right)^{2}$	
	Coefficient = 60	B1
		2
1(b)	Constant term in $\left(x - \frac{2}{x}\right)^6 = 20x^3 \times \left(\frac{-2}{x}\right)^3 (-160)$	B2 , 1
	Coefficient of x^2 in $(2+3x)(x-\frac{2}{x})^6 = 120 - 480 = -360$	B1FT
		3

Question	Answer	Marks
2(a)	$3\cos\theta = 8\tan\theta \rightarrow 3\cos\theta = \frac{8\sin\theta}{\cos\theta}$	M1
	$3(1-\sin^2\theta)=8\sin\theta$	M1
	$3\sin^2\theta + 8\sin\theta - 3 = 0$	A1
		3
2(b)	$(3\sin\theta - 1)(\sin\theta + 3) = 0 \longrightarrow \sin\theta = \frac{1}{3}$	M1
	$\theta = 19.5^{\circ}$	A1
		2

9709/12

Question	Answer	 Marks
3(a)	Volume after 30 s = 18000 $\frac{4}{3}\pi r^3 = 18000$	M1
	r = 16.3 cm	A1
		2
3(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{600}{4\pi r^2}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.181 \mathrm{cm} \mathrm{per} \mathrm{second}$	A1
		3

Question	Answer	Marks
4	1st term is -6, 2nd term is -4.5 (M1 for using <i>k</i> th terms to find both <i>a</i> and <i>d</i>)	M1
	$\rightarrow a = -6, d = 1.5$	A1 A1
	$S_n = 84 \rightarrow 3n^2 - 27n - 336 = 0$	M1
	Solution $n = 16$	A1
		5

Question	Answer	Marks
5(a)	$\mathrm{ff}(x) = a - 2(a - 2x)$	M1
	$\mathrm{ff}(x) = 4x - a$	A1
	$f^{-1}(x) = \frac{a-x}{2}$	M1 A1
		4
5(b)	$4x - a = \frac{a - x}{2} \longrightarrow 9x = 3a$	M1
	$x = \frac{a}{3}$	A1
		2

9709/12

Cambridge International AS & A Level - Mark Scheme
PUBLISHED

Question	Answer	Marks
6(a)	$2x^{2} + kx + k - 1 = 2x + 3 \rightarrow 2x^{2} + (k - 2)x + k - 4 = 0$	M1
	Use of $b^2 - 4ac = 0 \rightarrow (k - 2)^2 = 8(k - 4)$	M1
	<i>k</i> = 6	A1
		3
6(b)	$2x^{2} + 2x + 1 = 2\left(x + \frac{1}{2}\right)^{2} + 1 - \frac{1}{2}$	
	$a = \frac{1}{2}, b = \frac{1}{2}$	B1 B1
	vertex $\left(-\frac{1}{2},\frac{1}{2}\right)$	B1FT
	(FT on a and b values)	
		3

9709/12

Cambridge International AS & A Level – Mark Scheme PUBLISHED

9709_s20_ms_12

Question	Answer	Marks
7(a)	$BC^{2} = r^{2} + 4r^{2} - 2r \cdot 2r \times \cos\left(\frac{\pi}{6}\right) = 5r^{2} - 2r^{2}\sqrt{3}$	M1
	$BC = r\sqrt{\left(5 - 2\sqrt{3}\right)}$	A1
		2
7(b)	$Perimeter = \frac{2\pi r}{6} + r + r\sqrt{\left(5 - 2\sqrt{3}\right)}$	M1 A1
		2
7(c)	Area = sector – triangle	
	Sector area = $\frac{1}{2}4r^2\frac{\pi}{6}$	M1
	Triangle area = $\frac{1}{2}r$. $2r\sin\frac{\pi}{6}$	M1
	Shaded area = $r^2 \left(\frac{\pi}{3} - \frac{1}{2}\right)$	A1
		3

Question	Answer	Marks
8(a)	$Volume = \pi \int x^2 dy = \pi \int \frac{36}{y^2} dy$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly \rightarrow (12 π)	DM1
	Vol of cylinder = π . 1 ² .4 or $\int 1^2 dy = [y]$ from 2 to 6	M1
	$Vol = 12\pi - 4\pi = 8\pi$	A1
		5
8(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6}{x^2}$	B1
	$\frac{-6}{x^2} = -2 \longrightarrow x = \sqrt{3}$	M1
	$y = \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{Lies on } y = 2x$	A1
		3

9709_s20_ms_12

Question	Answer	Marks
9(a)	f(x) from -1 to 5	B1B1
	g(x) from -10 to 2 (FT from part (a))	B1FT
		3
9(b)		B2, 1
		2
9(c)	Reflect in x-axis	B1
	Stretch by factor 2 in the <i>y</i> direction	B1
	Translation by $-\pi$ in the <i>x</i> direction OR translation by $\begin{pmatrix} 0 \\ -\pi \end{pmatrix}$.	B1
		3

Question	Answer	Marks
10(a)	$\frac{dy}{dx} = 54 - 6(2x - 7)^2$	B2,1
	$\frac{d^2 y}{dx^2} = -24(2x - 7)$	B2,1 FT
	(FT only for omission of ' \times 2 ' from the bracket)	
		4
10(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to (2x - 7)^2 = 9$	M1
	x = 5, y = 243 or $x = 2, y = 135$	A1 A1
		3
10(c)	$x = 5 \frac{d^2 y}{dx^2} = -72 \rightarrow Maximum$	B1FT
	(FT only for omission of $\times 2$ ' from the bracket)	
	$x = 2 \frac{d^2 y}{dx^2} = 72 \rightarrow Minimum$	B1FT
	(FT only for omission of ' \times 2' from the bracket)	
		2

Question	Answer	Marks
11(a)	Express as $(x-4)^2 + (y+2)^2 = 16 + 4 + 5$	M1
	Centre <i>C</i> (4, -2)	A1
	Radius = $\sqrt{25} = 5$	A1
		3
11(b)	$P(1,2)$ to $C(4, -2)$ has gradient $-\frac{4}{3}$	B1FT
	(FT on coordinates of <i>C</i>)	
	Tangent at <i>P</i> has gradient = $\frac{3}{4}$	M1
	Equation is $y-2 = \frac{3}{4}(x-1)$ or $4y = 3x + 5$	A1
		3
11(c)	Q has the same coordinate as $P y = 2$	B1
	Q is as far to the right of C as $P x = 3 + 3 + 1 = 7 Q (7, 2)$	B1
		2

Question	Answer	 Marks
11(d)	Gradient of tangent at $Q = -\frac{3}{4}$ by symmetry (FT from part (b))	B1FT
	Eqn of tangent at <i>Q</i> is $y-2 = -\frac{3}{4}(x-7)$ or $4y + 3x = 29$	M1
	$T(4, \frac{17}{4})$	A1
		3