Question	Answer	Marks
1	$117=\frac{9}{2}(2 a+8 d)$	B1
	Either $91=S_{4}$ with ' a ' as $a+4 d$ or $117+91=S_{13}$ (M1 for overall approach. M1 for S_{n})	M1M1
	Simultaneous Equations $\rightarrow a=7, d=1.5$	A1
		4

Question	Answer	Marks
2	$\left(k x+\frac{1}{x}\right)^{5}+\left(1-\frac{2}{x}\right)^{8}$ Coefficient in $\left(k x+\frac{1}{x}\right)^{5}=10 \times k^{2}$ (B1 for 10. B1 for k^{2})	B1B1
	Coefficient in $\left(1-\frac{2}{x}\right)^{8}=8 \times-2$	B2,1,0
	$10 k^{2}-16=74 \rightarrow k=3$	B1
		5

Question	Answer	Marks
4(a)	$-1 \leqslant \mathrm{f}(x) \leqslant 2$	B1 B1
		2
4(b)	$k=1$	B1
	Translation by 1 unit upwards parallel to the y -axis	B1
		2
4(c)	$y=-\frac{3}{2} \cos 2 x-\frac{1}{2}$	B1
		1

Question	Answer		Marks
5(a)	$x(m x+c)=16 \rightarrow m x^{2}+c x-16=0$		B1
	Use of $b^{2}-4 \mathrm{ac}=c^{2}+64 m$		M1
	Sets to $0 \rightarrow m=\frac{-c^{2}}{64}$		A1
			3
5(b)	$x(-4 x+c)=16$ Use of $b^{2}-4 \mathrm{ac} \rightarrow c^{2}-256$		M1
	$c>16$ and $c<-16$		A1 A1
			3

Question	Answer	Marks
6(a)	$3(3 x+b)+b=9 x+4 b \rightarrow 10=18+4 b$	M1
	$b=-2$	A1
	Either $\mathrm{f}(14)=2$ or $\mathrm{f}^{-1}(x)=2(x+a)$ etc.	M1
	$a=5$	A1
		4
6(b)	$\operatorname{gf}(x)=3\left(\frac{1}{2} x-5\right)-2$	M1
	$\operatorname{gf}(x)=\frac{3}{2} x-17$	A1
		2

Question	Answer	Marks
7(a)	$\frac{(1+\sin \theta)^{2}+\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}$	M1
	Use of $\sin ^{2} \theta+\cos ^{2} \theta=1 \rightarrow \frac{2+2 \sin \theta}{\cos \theta(1+\sin \theta)} \rightarrow \frac{2}{\cos \theta}$.	M1A1
		3
7(b)	$\frac{2}{\cos \theta}=\frac{3}{\sin \theta} \rightarrow \tan \theta=1.5$	M1
	$\theta=0.983 \text { or } 4.12$ (FT on second value for 1 st value $+\pi$)	$\begin{array}{r} \text { A1 } \\ \text { A1FT } \end{array}$
		3

Question	Answer	Marks
8	Angle $A O B=15 \div 6=2.5$ radians	B1
	Angle $B O C=\pi-2.5$ (FT on angle AOB)	B1FT
	$B C=6(\pi-2.5) \quad(B C=3.850)$	M1
	$\sin (\pi-2.5)=B X \div 6 \quad(B X=3.59)$	M1
	Either $O X=6 \cos (\pi-2.5)$ or Pythagoras $(O X=4.807)$	M1
	$X C=6-O X \quad(X C=1.193) \rightarrow P=8.63$	A1
		6

Question	Answer	Marks
9(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3(3-2 x)^{2} \times-2+24=-6(3-2 x)^{2}+24$ (B1 without $\times-2$. $\mathbf{B 1}$ for $\times-2$)	B1B1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-12(3-2 x) \times-2=24(3-2 x)$ (B1FT from $\frac{\mathrm{d} y}{\mathrm{~d} x}$ without -2)	$\begin{array}{r} \text { B1FT } \\ \text { B1 } \end{array}$
		4
9(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { when } 6(3-2 x)^{2}=24 \rightarrow 3-2 x= \pm 2$	M1
	$x=1 / 2, y=20 \text { or } x=2^{1 / 2}, y=52$ (A1 for both x values or a correct pair)	A1A1
		3
9(c)	If $x=1 / 2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=48$ Minimum	B1FT
	If $x=2^{1 ⁄ 2}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-48$ Maximum	B1FT
		2

Question	Answer	Marks
10(a)	Centre is (3,1)	B1
	Radius $=5$ (Pythagoras)	B1
	Equation of C is $(x-3)^{2}+(y-1)^{2}=25$ (FT on their centre)	$\begin{array}{r} \text { M1 } \\ \text { A1FT } \end{array}$
		4
10(b)	Gradient from $(3,1)$ to $(7,4)=3 / 4$ (this is the normal)	B1
	Gradient of tangent $=-\frac{4}{3}$	M1
	Equation is $y-4=-\frac{4}{3}(x-7)$ or $3 y+4 x=40$	M1A1
		4
10(c)	B is centre of line joining centres $\rightarrow(11,7)$	B1
	Radius $=5$ New equation is $(x-11)^{2}+(y-7)^{2}=25$ (FT on coordinates of B)	$\begin{array}{r} \text { M1 } \\ \text { A1FT } \end{array}$
		3

Question	Answer	Marks
11(a)	Simultaneous equations $\frac{8}{x+2}=4-1 / 2 x$	M1
	$x=0$ or $x=6 \rightarrow A(0,4)$ and $B(6,1)$	B1A1
	At $C \frac{-8}{(x+2)^{2}}=-\frac{1}{2}$	B1
	(B1 for the differentiation. M1 for equating and solving)	M1A1
		6
11(b)	Volume under line $=\pi \int\left(-\frac{1}{2} x+4\right)^{2} \mathrm{~d} x=\pi\left[\frac{x^{3}}{12}-2 x^{2}+16 x\right]=(42 \pi)$ (M1 for volume formula. A2,1 for integration)	$\begin{array}{r} \text { M1 } \\ \text { A2,1 } \end{array}$
	Volume under curve $=\pi \int\left(\frac{8}{x+2}\right)^{2} \mathrm{~d} x=\pi\left[\frac{-64}{x+2}\right]=(24 \pi)$	A1
	Subtracts and uses 0 to $6 \rightarrow 18 \pi$	M1A1
		6

