Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

97	0	9	S	2	0	ms	1	1

Question	Answer	Marks
1	$117 = \frac{9}{2}(2a + 8d)$	B1
	Either $91 = S_4$ with 'a' as $a + 4d$ or $117 + 91 = S_{13}$ (M1 for overall approach. M1 for S_n)	M1M1
	Simultaneous Equations $\rightarrow a = 7, d = 1.5$	A1
		4

Question	Answer	Marks
2	$\left(kx + \frac{1}{x}\right)^5 + \left(1 - \frac{2}{x}\right)^8$	B1B1
	Coefficient in $\left(kx + \frac{1}{x}\right)^5 = 10 \times k^2$	
	(B1 for 10. B1 for k^2)	
	Coefficient in $\left(1 - \frac{2}{x}\right)^8 = 8 \times -2$	B2,1,0
	$10k^2 - 16 = 74 \longrightarrow k = 3$	B1
		5

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

9709_s20_ms_11

Question	Answer	Marks
3(a)	$36000 \times (1.05)^{n}$ (B1 for $r = 1.05$. M1 method for <i>r</i> th term)	B1M1
	\$53 200 after 8 years.	A1
		3
3(b)	$S_{10} = 36000 \frac{\left(1.05^{10} - 1\right)}{\left(1.05 - 1\right)}$	M1
	\$453 000	A1
		2

Question	Answer	Marks
4(a)	$-1 \leq f(x) \leq 2$	B1 B1
		2
4(b)	k = 1	B1
	Translation by 1 unit upwards parallel to the y-axis	B1
		2
4(c)	$y = -\frac{3}{2}\cos 2x - \frac{1}{2}$	B1
		1

Question	Answer	Marks
5(a)	$x(mx+c) = 16 \to mx^2 + cx - 16 = 0$	B1
	Use of $b^2 - 4ac = c^2 + 64m$	M1
	Sets to $0 \rightarrow m = \frac{-c^2}{64}$	A1
		3
5(b)	x(-4x+c) = 16 Use of $b^2 - 4ac \rightarrow c^2 - 256$	M1
	c > 16 and $c < -16$	A1 A1
		3

	PUBLISHED 9709	_s20_ms	11
Question	Answer	Marks	
6(a)	$3(3x+b)+b=9x+4b \rightarrow 10=18+4b$	M1	
	b = -2	A1	
	Either $f(14) = 2$ or $f^{-1}(x) = 2(x + a)$ etc.	M1	
	<i>a</i> = 5	A1	
		4	
6(b)	$gf(x) = 3\left(\frac{1}{2}x - 5\right) - 2$	M1	
	$gf(x) = \frac{3}{2}x - 17$	A1	
		2	

	PUBLISHED 9709	_s20_ms_	_11
Question	Answer	Marks	
7(a)	$\frac{\left(1+\sin\theta\right)^2+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	
	Use of $\sin^2 \theta + \cos^2 \theta = 1 \rightarrow \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} \rightarrow \frac{2}{\cos \theta}$.	M1A1	
		3	
7(b)	$\frac{2}{\cos\theta} = \frac{3}{\sin\theta} \to \tan\theta = 1.5$	M1	
	$\theta = 0.983 \text{ or } 4.12$ (FT on second value for 1st value + π)	A1 A1FT	
		3	

Question	Answer	Marks
8	Angle $AOB = 15 \div 6 = 2.5$ radians	B1
	Angle $BOC = \pi - 2.5$ (FT on angle AOB)	B1FT
	$BC = 6(\pi - 2.5) (BC = 3.850)$	M1
	$\sin(\pi - 2.5) = BX \div 6 (BX = 3.59)$	M1
	Either $OX = 6\cos(\pi - 2.5)$ or Pythagoras ($OX = 4.807$)	M1
	$XC = 6 - OX$ ($XC = 1.193$) $\rightarrow P = 8.63$	A1
		6

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2020

	PUBLISHED 9709	_s20_ms_11
Question	Answer	Marks
9(a)	$\frac{dy}{dx} = 3(3-2x)^2 \times -2 + 24 = -6(3-2x)^2 + 24$ (B1 without ×-2. B1 for ×-2)	B1B1
	$\frac{d^2 y}{dx^2} = -12(3-2x) \times -2 = 24(3-2x)$ (B1FT from $\frac{dy}{dx}$ without -2)	B1FT B1
		4
9(b)	$\frac{dy}{dx} = 0$ when $6(3-2x)^2 = 24 \rightarrow 3-2x = \pm 2$	M1
	$x = \frac{1}{2}, y = 20 \text{ or } x = \frac{21}{2}, y = 52$ (A1 for both x values or a correct pair)	A1A1
		3
9(c)	If $x = \frac{1}{2}$, $\frac{d^2 y}{dx^2} = 48$ Minimum	B1FT
	If $x = 2^{1/2}$, $\frac{d^2 y}{dx^2} = -48$ Maximum	B1FT
		2

9709_	_s20	_ms	_11

Question	Answer	Marks
10(a)	Centre is (3, 1)	B1
	Radius = 5 (Pythagoras)	B1
	Equation of C is $(x-3)^2 + (y-1)^2 = 25$ (FT on <i>their</i> centre)	M1 A1FT
		4
10(b)	Gradient from (3, 1) to (7, 4) = $\frac{3}{4}$ (this is the normal)	B1
	Gradient of tangent = $-\frac{4}{3}$	M1
	Equation is $y-4 = -\frac{4}{3}(x-7)$ or $3y+4x = 40$	M1A1
		4
10(c)	<i>B</i> is centre of line joining centres \rightarrow (11, 7)	B1
	Radius = 5 New equation is $(x-11)^2 + (y-7)^2 = 25$ (FT on coordinates of B)	M1 A1FT
		3

	PUBLISHED 9709		11
Question	Answer	Marks	
11(a)	Simultaneous equations $\frac{8}{x+2} = 4 - \frac{1}{2x}$	M1	
	$x = 0 \text{ or } x = 6 \rightarrow A(0, 4) \text{ and } B(6, 1)$	B1A1	
	At $C \xrightarrow{-8} = -\frac{1}{2} \rightarrow C(2, 2)$	B1	
	$(x+2)^2 = 2$ (B1 for the differentiation. M1 for equating and solving)	M1A1	
		6	
11(b)	Volume under line = $\pi \int \left(-\frac{1}{2}x + 4 \right)^2 dx = \pi \left[\frac{x^3}{12} - 2x^2 + 16x \right] = (42\pi)$	M1 A2,1	
	(M1 for volume formula. A2,1 for integration)		
	Volume under curve = $\pi \int \left(\frac{8}{x+2}\right)^2 dx = \pi \left[\frac{-64}{x+2}\right] = (24\pi)$	A1	
	Subtracts and uses 0 to $6 \rightarrow 18\pi$	M1A1	
		6	