Question	Answer	Marks	
1	$0.6 \pm z \sqrt{\frac{0.4 \times 0.6}{100}}$	M1	Recognisable value of z
	$z=2.326$	$\mathbf{B 1}$	2.326 to 2.329
	0.486 to $0.714(3 \mathrm{sf})$	$\mathbf{A 1}$	Must be an interval
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$\frac{50}{49}\left(\frac{4361}{50}-\bar{x}^{2}\right)=9.62$	M1	or $\left(\frac{4361}{49}-\frac{(\Sigma x)^{2}}{50 \times 49}\right)=9.62 \mathrm{BOD}$ regarding symbols used
	$\bar{x}^{2}=\frac{4361}{50}-9.62 \times \frac{49}{50}=77.7924$	A1	$(\Sigma x)^{2}=4361 \times 50-9.62 \times 50 \times 49=194481$ or $\Sigma x=441(\Sigma x)$ or (\bar{x}) must be correctly identified
	$\bar{x}=8.82(3 \mathrm{sf})$	A1	SC use of 'biased' leading to 8.81 B1
		3	

Question	Answer	Marks	Guidance
$3(\mathrm{i})$	D more likely to be chosen	B1	oe, e.g. $\mathrm{P}(D)>\mathrm{P}(A)$ e.g. $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{C})=1 / 6 \mathrm{P}(\mathrm{D})=1 / 2$ no contradictions
		$\mathbf{1}$	
3 (ii)	Reject scores of 5 or 6	B1	or other correct: choose D when the score is 4
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3 (iii)	AB AC AD BC BD CD	B1	
	Allocate as follows: $1: \mathrm{AB} ; 2: \mathrm{AC} ; 3: \mathrm{AD} ; 4: \mathrm{BC} ; 5: \mathrm{BD} \mathrm{6:} \mathrm{CD}$	B1	or similar
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4	Total ~ N (1208,)	B1	
	$\operatorname{Var}($ total $)(=10 \times 1.2+20 \times 0.7(+0))=26$	B1	May be implied by next line
	$\pm \frac{1200-\text { "1208" }}{\sqrt{" 26^{\prime \prime}}} \quad(=-1.569)$	M1	FT their mean and var of total mass, e.g. allow 1200 and 11.24 (from $10 \times 1.2^{2}+20 \times 0.7^{2}$)
	$1-\Phi$ ("1.569")	M1	Correct area consistent with their working
	$=0.0583$ (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
5	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=20 \\ & \mathrm{H}_{1}: \text { Pop mean } \neq 20 \end{aligned}$	B1	Accept μ
	$\frac{\Sigma x}{6} \quad\left(=\frac{126.9}{6}=21.15\right)$	M1	Attempted or 126.9 and 11.64 attempted
	$\frac{' 21.15^{\prime}-20}{\sqrt{\frac{1.94}{6}}}$	M1	Must have $\sqrt{6}$ or $\frac{120-126.9}{\sqrt{11.64}}$ no mixed method
	$=2.022$	A1	
	$\left.2\left(1-\phi\left({ }^{\prime} 2.022^{\prime}\right)\right) 2\left(1-{ }^{\prime} 0.9784\right)^{\prime}=0.0432\right)$	M1	$\text { FT } 2 \times\left(1-^{\prime} .9784^{\prime}\right)$
	$\alpha=4.32$ (3 sf)	A1	FT Allow 4.3 or 4, if correct working seen, or clearly implied, as far as 0.0216 FT their z, no error seen One-tail test scores maximum 3/6
		6	

Question	Answer	Marks	Guidance
6(i)	$\begin{aligned} & \frac{3}{a^{3}} \int_{0}^{a} x^{2} d x \\ & \left(=\frac{3}{a^{3}}\left[\frac{x^{3}}{3}\right]_{0}^{a}\right) \end{aligned}$	M1	Attempt to integrate $\mathrm{f}(\mathrm{x})$ with limits 0 and a (condone missing $\frac{3}{a^{3}}$)
	$=\frac{3 a^{3}}{3 a^{3}}$	A1	$\frac{3 a^{3}}{3 a^{3}}-0$ or better seen
	$=1$ Hence f is pdf for all a	A1	Answer = 1 and comment
		3	
6(ii)	$\begin{aligned} & \frac{3}{a^{3}} \int_{0}^{2} x^{2} d x=0.5 \\ & \frac{3}{a^{3}}\left[\frac{x^{3}}{3}\right]_{0}^{2}=0.5 \end{aligned}$	M1	Attempt to integrate $f(x)=0.5$, limits 0 and 2 oe, condone missing $\frac{3}{a^{3}}$
	$\frac{3}{a^{3}} \times \frac{8}{3}=0.5 \mathrm{oe}$	A1	$\frac{2^{3}}{3}-0$ or better, condone missing $\frac{3}{a^{3}}$
	$\begin{aligned} & a^{3}=16 \text { or } a=\sqrt[3]{16} \\ & (=2.52 \mathbf{A G}) \end{aligned}$	A1	Convincingly obtained Note: Attempt to verify 2.52 , M1 as stated except not equated to 0.5 .A1 as stated, A1 for evaluation to 0.499 ..apprx 0.5
		3	

Question		Answer	Marks	Guidance
6(iii)	$\begin{aligned} & \frac{3}{16} \int_{0}^{2.52} x^{3} d x \\ & =\frac{3}{16}\left[\frac{x^{4}}{4}\right]_{0}^{2.52} \end{aligned}$	$\begin{aligned} & \text { or } \frac{3}{16} \int_{0}^{a} x^{3} d x \\ & \text { or } \frac{3}{16}\left[\frac{x^{4}}{4}\right]_{0}^{a} \end{aligned}$	M1	Attempt integ $x \mathrm{f}(x)$, correct limits, condone missing $\frac{3}{a^{3}}$
	$=\frac{3}{16} \times \frac{40.317}{4}$		A1	$\frac{2.52^{4}}{4}-0$ or better, condone missing $\frac{3}{a^{3}}$
	$=1.89(3 \mathrm{sf})$		A1	
			3	

Question	Answer	Marks	Guidance
7(i)	Use of $\mathrm{Po}(2.8)$	M1	May be implied
	$\left.1-\mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right)\right)$	M1	Any λ allowing one end error
	$=0.531$ or $0.53(0)(3 \mathrm{sf})$	A1	SC Binomial 0.534 B1
		3	
7(ii)	Use of $\operatorname{Po}(5.8)$	M1	May be implied
	$\mathrm{e}^{-5.8} \times \frac{5.8^{6}}{6!}$	M1	Any λ
	$=0.16(0)(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	Use of $\mathrm{N}(58,58)$	M1	May be implied or $\mathrm{N}(58,55.38)$
	$\frac{50.5-' 58^{\prime}}{\sqrt{ } 58^{\prime}}(=-0.985)$	M1	Standardised with their values, allow wrong or incorrect cc
	Ф('0.985')	M1	Correct area consistent with their working or $\Phi($ " 1.008$)$
	$=0.838(3 \mathrm{sf})$	A1	or 0.843
		4	

Question	Answer	Marks	Guidance
8(i)	$\begin{aligned} & \mathrm{H}_{0}: p=\frac{1}{4} \\ & \mathrm{H}_{1}: p>\frac{1}{4} \end{aligned}$	B1	
	$\begin{aligned} & { }^{10} \mathrm{C}_{6}\left(\frac{1}{4}\right)^{6}\left(\frac{3}{4}\right)^{4}+{ }^{10} \mathrm{C}_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}+{ }^{10} \mathrm{C}_{8}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{2}+ \\ & 10\left(\frac{1}{4}\right)^{9}\left(\frac{3}{4}\right)+\left(\frac{1}{4}\right)^{10} \end{aligned}$	M1	Correct terms, allow one term incorrect or omitted or extra or summing all correct terms from 0 to 5 allow one term incorrect or omitted or extra
	$=0.0197$	A1	or 0.9803
	comp '0.0197' with 0.01	M1	Valid comparison with 0.01 or valid comparison with 0.99
	No evidence to conclude $p>\frac{1}{4}$	A1	FT No contradictions Use of two-tail test can score BOM1A1M1(comparison with 0.005) A0
		5	
8(ii)	${ }^{10} \mathrm{C}_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}+{ }^{10} \mathrm{C}_{8}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{2}+10\left(\frac{1}{4}\right)^{9}\left(\frac{3}{4}\right)+\left(\frac{1}{4}\right)^{10}$	M1	Their $\mathrm{P}(\mathrm{X} \geqslant 6)-{ }^{10} C_{6}(0.25)^{6}(0.75)^{4}$
	$\mathrm{P}($ Type I$)=0.00351(3 \mathrm{sf})$	A1	Accept 0.00348 to 0.00351
		2	
8(iii)	$\begin{aligned} & \text { C.R is } X \geqslant 7 \\ & \mathrm{P}(\text { Type II })=1-\mathrm{P}\left(X \geqslant 7 \left\lvert\, p=\frac{3}{5}\right.\right)= \end{aligned}$	M1	May be implied
	$1-\left({ }^{10} \mathrm{C}_{7}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{3}+{ }^{10} \mathrm{C}_{8}\left(\frac{3}{5}\right)^{8}\left(\frac{2}{5}\right)^{2}+10\left(\frac{3}{5}\right)^{9}\left(\frac{2}{5}\right)+\left(\frac{3}{5}\right)^{10}\right)$	M1	Accept $1-\mathrm{P}\left(X \geqslant 8 \left\lvert\, p=\frac{3}{5}\right.\right)$ or $1-\mathrm{P}\left(X \geqslant 6 \left\lvert\, p=\frac{3}{5}\right.\right)$
	$=0.618$	A1	
		3	

