Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
1	$0.6 \pm z \sqrt{\frac{0.4 \times 0.6}{100}}$	M1	Recognisable value of z
	<i>z</i> = 2.326	B1	2.326 to 2.329
	0.486 to 0.714 (3 sf)	A1	Must be an interval
		3	

Question	Answer	Marks	Guidance
2	$\frac{50}{49} \left(\frac{4361}{50} - \overline{x}^2\right) = 9.62$	M1	or $\left(\frac{4361}{49} - \frac{(\Sigma x)^2}{50 \times 49}\right) = 9.62$ BOD regarding symbols used
	$\overline{x}^2 = \frac{4361}{50} - 9.62 \times \frac{49}{50} = 77.7924$	A1	$(\Sigma x)^2 = 4361 \times 50 - 9.62 \times 50 \times 49 = 194481$ or $\Sigma x = 441 \ (\Sigma x)$ or (\overline{x}) must be correctly identified
	$\overline{x} = 8.82 (3 \text{ sf})$	A1	SC use of 'biased' leading to 8.81 B1
		3	

Question	Answer	Marks	Guidance
3(i)	D more likely to be chosen	B1	oe, e.g. $P(D) > P(A)$ e.g. $P(A)=P(B)=P(C)=1/6$ $P(D)=1/2$ no contradictions
		1	
3(ii)	Reject scores of 5 or 6	B1	or other correct: choose D when the score is 4
		1	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 73

Question	Answer	Marks	Guidance
3(iii)	AB AC AD BC BD CD	B1	
	Allocate as follows: 1: AB; 2: AC; 3: AD; 4: BC; 5: BD 6: CD	B1	or similar
		2	

Question	Answer	Marks	Guidance
4	Total ~ N(1208,)	B1	
	Var(total) (= $10 \times 1.2 + 20 \times 0.7 (+ 0)$) = 26	B1	May be implied by next line
	$\pm \frac{1200-"1208"}{\sqrt{"26"}} \qquad (=-1.569)$	M1	FT their mean and var of total mass, e.g. allow 1200 and 11.24 (from $10 \times 1.2^2 + 20 \times 0.7^2$)
	1 – Φ("1.569")	M1	Correct area consistent with their working
	= 0.0583 (3 sf)	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
5	$ \begin{array}{l} H_0: \text{Pop mean} = 20 \\ H_1: \text{Pop mean} \neq 20 \end{array} $	B1	Accept µ
	$\frac{\Sigma x}{6}$ (= $\frac{126.9}{6}$ = 21.15)	M1	Attempted or 126.9 and 11.64 attempted
	$\frac{\frac{21.15'-20}{\sqrt{\frac{1.94}{6}}}$	M1	Must have $\sqrt{6}$ or $\frac{120-126.9}{\sqrt{11.64}}$ no mixed method
	= 2.022	A1	
	$2(1 - \phi(2.022')) 2 (1 - 0.9784)' = 0.0432)$	M1	FT $2 \times (1 - '.9784')$
	$\alpha = 4.32 (3 \text{ sf})$	A1	FT Allow 4.3 or 4, if correct working seen, or clearly implied, as far as 0.0216 FT their z, no error seen One-tail test scores maximum 3/6
		6	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{3}{a^3}\int_0^a x^2 dx}{\left(=\frac{3}{a^3}\left[\frac{x^3}{3}\right]_0^a\right)}$	M1	Attempt to integrate $f(x)$ with limits 0 and a (condone missing $\frac{3}{a^3}$)
	$=\frac{3a^3}{3a^3}$	A1	$\frac{3a^3}{3a^3} - 0$ or better seen
	= 1 Hence f is pdf for all a	A1	Answer = 1 and comment
		3	
6(ii)	$\frac{3}{a^3} \int_{0}^{2} x^2 dx = 0.5$ $\frac{3}{a^3} \left[\frac{x^3}{3} \right]_{0}^{2} = 0.5$	M1	Attempt to integrate f(x)=0.5, limits 0 and 2 oe, condone missing $\frac{3}{a^3}$
	$\frac{3}{a^3} \times \frac{8}{3} = 0.5$ oe	A1	$\frac{2^3}{3} - 0$ or better, condone missing $\frac{3}{a^3}$
	$a^3 = 16 \text{ or } a = \sqrt[3]{16}$ (= 2.52 AG)	A1	Convincingly obtained Note: Attempt to verify 2.52, M1 as stated except not equated to 0.5.A1 as stated, A1 for evaluation to 0.499apprx 0.5
		3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 73

Question	Answer	Marks	Guidance
6(iii)	$= \frac{3}{16} \int_{0}^{2.52} x^3 dx \qquad \text{or } \frac{3}{16} \int_{0}^{a} x^3 dx$ $= \frac{3}{16} \left[\frac{x^4}{4} \right]_{0}^{2.52} \qquad \text{or } \frac{3}{16} \left[\frac{x^4}{4} \right]_{0}^{a}$	M1	Attempt integ <i>x</i> f(<i>x</i>), correct limits, condone missing $\frac{3}{a^3}$
	$=\frac{3}{16} \times \frac{40.317}{4}$	A1	$\frac{2.52^4}{4} - 0$ or better, condone missing $\frac{3}{a^3}$
	= 1.89 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	Use of Po(2.8)	M1	May be implied
	$1 - e^{-2.8}(1 + 2.8 + \frac{2.8^2}{2}))$	M1	Any λ allowing one end error
	= 0.531or 0.53(0) (3 sf)	A1	SC Binomial 0.534 B1
		3	
7(ii)	Use of Po(5.8)	M1	May be implied
	$e^{-5.8} \times \frac{5.8^6}{6!}$	M1	Αηγ λ
	= 0.16(0) (3 sf)	A1	
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
7(iii)	Use of N(58, 58)	M1	May be implied or N(58, 55.38)
	$\frac{50.5 - 58'}{\sqrt{58'}} \ (= -0.985)$	M1	Standardised with their values, allow wrong or incorrect cc
	Φ('0.985')	M1	Correct area consistent with their working
			or $\Phi("1.008)$
	= 0.838 (3 sf)	A1	or 0.843
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

Question	Answer	Marks	Guidance
8(i)	H ₀ : $p = \frac{1}{4}$ H ₁ : $p > \frac{1}{4}$	B1	
	$ \frac{{}^{10}C_6(\frac{1}{4})^6(\frac{3}{4})^4 + {}^{10}C_7(\frac{1}{4})^7(\frac{3}{4})^3 + {}^{10}C_8(\frac{1}{4})^8(\frac{3}{4})^2 + \\ 10(\frac{1}{4})^9(\frac{3}{4}) + (\frac{1}{4})^{10} $	M1	Correct terms, allow one term incorrect or omitted or extra or summing all correct terms from 0 to 5 allow one term incorrect or omitted or extra
	= 0.0197	A1	or 0.9803
	comp '0.0197' with 0.01	M1	Valid comparison with 0.01
			or valid comparison with 0.99
	No evidence to conclude $p > \frac{1}{4}$	A1	FT No contradictions Use of two-tail test can score BOM1A1M1(comparison with 0.005) A0
		5	
8(ii)	${}^{10}C_7(\frac{1}{4})^7(\frac{3}{4})^3 + {}^{10}C_8(\frac{1}{4})^8(\frac{3}{4})^2 + 10(\frac{1}{4})^9(\frac{3}{4}) + (\frac{1}{4})^{10}$	M1	Their P(X ≥ 6) - ${}^{10}C_6 (0.25)^6 (0.75)^4$
	P(Type I) = 0.00351 (3 sf)	A1	Accept 0.00348 to 0.00351
		2	
8(iii)	C.R is $X \ge 7$ P(Type II) = 1 – P($X \ge 7 p = \frac{3}{5}$) =	M1	May be implied
	$1 - \left({}^{10}\text{C7}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{3} + {}^{10}\text{C8}\left(\frac{3}{5}\right)^{8}\left(\frac{2}{5}\right)^{2} + 10\left(\frac{3}{5}\right)^{9}\left(\frac{2}{5}\right) + \left(\frac{3}{5}\right)^{10}\right)$	M1	Accept $1 - P(X \ge 8 p = \frac{3}{5})$ or $1 - P(X \ge 6 p = \frac{3}{5})$
	= 0.618	A1	
		3	