Question	Answer	Marks	
1 (i)	$0.0842(3 \mathrm{sf})$	$\mathbf{B} 1$	
			$\mathbf{1}$

Question	Answer	Marks	Guidance
2(i)	Normal with mean 372	B1	
	$\mathrm{sd}=\frac{54}{\sqrt{36}}$	M1	$\text { or variance }=\frac{54^{2}}{36} \mathrm{M} 1$
	(=9)	A1	($=81$) A 1
		3	
2(ii)	Pop normal	B1	Allow X is normal
		1	

Question	Answer	Marks	Guidance
3(i)	$\operatorname{Est}(\mu)=1.85$	B1	
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{50}{49}\left(\frac{175.25}{50}-1.85^{\prime 2}\right)$	M1	Allow $\sqrt{\frac{50}{49}\left(\frac{175.25}{150}-1.85^{\prime 2}\right)}$ or 0.0290 for M1
	$=0.0842(3 \mathrm{sf}) \text { or } \frac{33}{392}$	A1	Cao If $\frac{50}{49}$ omitted (giving var $=0.0825$ or sd $=0.287$) M0A0
		3	
3(ii)	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean time }=1.9(\mathrm{~h}) \\ & \mathrm{H}_{1}: \text { Pop mean time }<1.9(\mathrm{~h}) \end{aligned}$	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{1.85-1.9}{\sqrt{\frac{0.0842^{\prime}}{50}}}$	M1	$\pm \frac{\frac{1.85-1.9}{\prime^{0.290^{\prime}}}}{\sqrt{50}} \text { Accept totals method }(92.5-95) / \sqrt{4.21}$
	$=-1.22$	A1	$=-1.22$
	$\operatorname{comp} z=-1.645$	M1	Or other valid comparison 0.888 or $0.889<0.95$ OR 0.111 or $0.112>0.05$
	No evidence that mean time $<1.9 \mathrm{~h}$	A1	FT their z. Correct conclusion. No contradictions If $\frac{50}{49}$ not used in (1): var $=0.8225, \mathrm{sd}=0.907, \mathrm{cr}=1.17$ can score all marks in (ii) Note- 2 tail test can score B0 M1 A1 M1 (comparison with 1.96) A0 (no ft) max3/5
		5	

Question	Answer	Marks	Guidance
4	Use of $1.5 X_{1}-X_{2}$ or similar	B1	
	$\mathrm{E}\left(1.5 X_{1}-X_{2}\right)=1.5(110)-110(=55)$	B1	or $\mathrm{E}\left(X_{1}-1.5 X_{2}\right)=110-1.5(110)(=-55)$
	$\operatorname{Var}\left(1.5 X_{1}-X_{2}\right)=1.5^{2} \times 1050+1050$ (or 3412.5)	M1	Correct expression or result
	$\frac{0-55}{\sqrt{3412.5}}$ or $\frac{0-(-55)}{\sqrt{3412.5^{\prime}}}(= \pm 0.942)$	M1	Their '55'. Allow incorrect var ($\mathrm{dep}>0$ and $\neq 1050$)
	$1-\Phi\left({ }^{\prime} 0.942\right.$ ')	M1	Area consistent with their working
	$=0.173$	A1	
	Ans 0.346 (3 sf)	B1	FT double their prob (must be <1)
		7	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$\mathrm{H}_{0}: p=0.1$ $\mathrm{H}_{1}: p<0.1$	$\mathbf{B 1}$	
		$\mathbf{1}$	
	$\mathrm{B}(40,0.1)$ stated or implied by use of	$\mathbf{B 1}$	e.g. by ${ }^{40} \mathrm{C}_{x}$ or $0.9^{p} \times 0.1^{q}(p+q=40)$
	$0.9^{40}+40 \times 0.9^{39} \times 0.1$	$\mathbf{M 1}$	Correct working (if seen). If working not seen, M1 may be implied by 0.0805
	$=0.0805$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(iii)	$z=1.645$	B1	seen
	$\frac{6}{80} \pm z \sqrt{\frac{\frac{6}{80} \times \frac{(80-6)}{80}}{80}}$	M1	Formula of correct form. Must be a ' z '
	$=0.0266$ to $0.123(3 \mathrm{sfs})$	A1	Allow 0.03 to 0.12 or better Must be an interval
		3	
5(iv)	10% (or manufacturer's claim) is within CI Hence no reason to question claim	B1	FT Allow ' 10% is within CI, accept claim' oe Must include both parts. No contradictions. FT their CI Note if CI is centred on 0.1 allow ft 0.075 is within CI, accept claim
		1	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	$a \int_{1}^{b} \frac{1}{x^{2}} d x=1$	M1	Attempt int $\mathrm{f}(x)$ and $=1$, ignore limits
	$a\left[-\frac{1}{x}\right] \frac{b}{1}=1$	$\mathbf{A 1}$	correct integ and limits $=1$
	$a\left[1-\frac{1}{b}\right]=1$ or $a \times \frac{b-1}{b}=1$ $b=\frac{a}{a-1} \mathbf{A G}$	$\mathbf{A 1}$	No errors seen
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(ii)	$\begin{aligned} & a \int_{1}^{\frac{3}{2}} \frac{1}{x^{2}} d x=\frac{1}{2} \\ & a\left[-\frac{1}{x}\right]^{\frac{3}{2}}=\frac{1}{2} \\ & 1 \end{aligned}$	M1	Attempt int $\mathrm{f}(x)$ with limits 1 to $\frac{3}{2}$ and $=\frac{1}{2}$
	$a\left[1-\frac{2}{3}\right]=\frac{1}{2}$	A1	oe correct equn in a
	$a=\frac{3}{2}, b=3$	A1	Both
		3	
6(iii)	$\frac{3}{2} \int_{1}^{3} \frac{1}{x} d x$	M1	Attempt int $x \mathrm{f}(x)$, ignore limits - condone missing a
	$=\frac{3}{2}[\ln x]_{1}^{3}$	A1	FT Correct integ and their limits 1 to b - condone missing a
	$=\frac{3}{2} \ln 3$ or 1.65 (3 sf)	A1	FT their a and b (valid b i.e. $>1)$
		3	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	Max no. of passengers plane can take oe	B1	oe e.g. No of passengers who bought tickets
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(ii)	$\lambda=3.2$	B1	
	$e^{-3.2}\left(\frac{3.2^{3}}{3!}+\frac{3.2^{4}}{4!}+\frac{3.2^{5}}{5!}\right)$	M1	Any λ. Allow one end error
	$=0.5146=0.515(3 \mathrm{sfs})$	A1	SR Use of Bin($640,0.005$) scores B1 (only) for 0.516
		3	
7(iii)	$n>50$	B1	Accept n is large
	$n p=1.6$, which is <5 or $\mathrm{p}=0.005$ which is <0.1	B1	Allow $n p=3.2$
		2	
7(iv)	H_{0} : Pop mean (for 5 days) $=8$ H_{1} : Pop mean (for 5 days) <8	B1	or Pop mean $($ for 1 day $)=1.6$ Pop mean (for 1 day) <1.6 Allow λ or μ but not just 'mean'
	$e^{-8}\left(1+8+\frac{8^{2}}{2!}\right)$	M1	Any $\lambda(\neq 1.6)$ No end errors. Accept use of $\operatorname{Bin}(1600,0.005) \mathrm{P}(0,1,2)=0.0136$
	$=0.0138$	A1	
	Comp 0.025	M1	Valid comparison
	Evidence that mean no. failing to arrive has decreased	A1	FT their ' 0.0138 ' or ' 0.0136 '. No contradictions
		5	

