Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(i)	Mean = 115	B1	
	SD = 40	B1	
		2	
1(ii)	Mean = $15 \times 115' = 1725$	B1ft	
	15×40^{2} (= 24000)	M1	or SD = $\sqrt{15 \times 40^{\circ}}$. ft their (i)
	$SD = \sqrt{24000}$ SD = 155 (cents) (3 sf)	A1	Accept $\sqrt{24000}$ SC: Allow correct answers in dollars
		3	

Question	Answer	Marks	Guidance
2(i)	Assume sd still 4.8 or is unchanged	B1	or Assume the 150 times can be treated as a random sample / are independent
	H ₀ : Pop mean = 26.5 H ₁ : Pop mean > 26.5	B1	Allow ' μ ' but not just 'mean'
	$\frac{27.5 - 26.5}{\frac{4.8}{\sqrt{150}}}$	M1	Standardise, with $$ Accept CV method
	= 2.552	A1	
	Comp with <i>z</i> -value '2.552' > 2.326	M1	or comp $1 - \Phi(2.552)$ with 0.01 1 - 0.9946 = 0.0054 < 0.01
	There is evidence time has increased	A1ft	oe No contradictions (2 tail test scores max. B1 B0 M1 A1 M1 (for comparison with 2.576) A0 no ft)
		6	

9709/71

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709_s19_ms_71

Question	Answer	Marks	Guidance
2(ii)	No because pop is normal so distr of \overline{X} is normal	B1	Condone just 'No because pop is normal'
		1	

Question	Answer	Marks	Guidance
3(i)	H ₀ : P(6) = $\frac{1}{6}$ H ₁ : P(6) < $\frac{1}{6}$	B1	
	$\left(\frac{5}{6}\right)^{30} + 30(\frac{1}{6}) \times (\frac{5}{6})^{29} + {}^{30}C_2(\frac{1}{6})^2 \times (\frac{5}{6})^{28}$	M1	Allow one term incorrect, omitted or extra
	= 0.103	A1	
	`0.103` > 0.05	M1	
	No evidence (at 5% level) that die biased	A1ft	oe No contradictions
		5	
3(ii)	$\left(\frac{5}{6}\right)^{30} + 30(\frac{1}{6}) \times (\frac{5}{6})^{29}$	M1	
	P(Type I) = 0.0295	A1	
		2	

9709/71

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709_s19_ms_71

Question	Answer	Marks	Guidance
4(a)(i)	$0.5 \times 1/a = \left(\frac{0.5}{a}\right)$	M1	Or attempt to integrate $f(x)$ (=1/a) between 0 and 0.5
	$=\frac{1}{2a}$ oe	A1	Accept 0.5/a for A1
		2	
4(a)(ii)	$\frac{a}{2}$	B1	
		1	
4(a)(iii)	$\int_0^a \frac{x^2}{a} dx - (\frac{a}{2})^2$	M1	Integ their $x^2 f(x)$ from 0 to <i>a</i> and sub their mean ²
	$\operatorname{Var}(X) = \frac{a^2}{3} - \frac{a^2}{4}$	A1	Must see this line oe
	$(\operatorname{Var}(X) = \frac{a^2}{12} \mathbf{AG})$		
		2	
4(b)	$\int_{2}^{b} \frac{3}{2(t-1)^2} \mathrm{d}t$	M1	Attempt integ $g(t)$ ignore limits
	$\left[-\frac{3}{2(t-1)}\right]_2^b$	A1	Correct integral
	$-\frac{3}{2}\left(\frac{1}{(b-1)}-1\right) = \frac{3}{4}$	M1	Attempt subst correct limits in their integ and $=\frac{3}{4}$
	$\left(1-\frac{1}{(b-1)}=\frac{1}{2}\right)$		
	<i>b</i> = 3	A1	
		4	

9709/71

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2019

9709_s19_ms_71

Question	Answer		Marks	Guidance
5(a)(i)	$e^{-2.3}(\frac{2.3^2}{2} + \frac{2.3^3}{3!} + \frac{2.3^4}{4!})$		M1	Allow one end error
	= 0.585		A1	
			2	
5(a)(ii)	$(\lambda) = 4.6$		B1	
	$1 - e^{-4.6} (1 + 4.6 + \frac{4.6^2}{2})$		M1	any λ , Allow one end error
	= 0.837 (3 sf)		A1	
			3	
5(a)(iii)	<i>S</i> ~ N(115, 115)		B1	May be implied
	$\frac{110.5-115}{\sqrt{115}}$	(=-0.420)	M1	Allow with wrong or no cc OR no $$
	1 – Φ('0.420')	(= 1 – 0.663)	M1	
	= 0.337		A1	Accept alternative method using N(2.3, 2.3) no mixed methods.
			4	
5(b)	$e^{-\lambda} \times \frac{\lambda^3}{3!} = e^{-\lambda} \times \frac{\lambda^5}{5!}$		M1	
	$\lambda^3 = \frac{\lambda^5}{4 \times 5}$ or $\lambda^2 = 20$ oe		A1	any correct simplification without $e^{-\lambda}$ or !
	$\lambda = \sqrt{20} \text{ or } 2\sqrt{5} \text{ or } 4.47 (3 \text{ sf})$		A1	
			3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2019

<u>9709_s19_ms_</u>71

Question	Answer	Marks	Guidance
6(i)	Biased towards people who like tennis Excludes people who don't like tennis	B1	or other sensible
		1	
6(ii)	Obtain a list of all people in the town	B1	
	Use random numbers	B1	or, e.g. pick numbers from a hat or other sensible
		2	
6(iii)	$\operatorname{Var}(p) = \frac{\frac{47}{350}(1 - \frac{47}{350})}{350} \ (= 0.000332152)$	M1	
	<i>z</i> = 1.645	B1	
	$\frac{47}{350} \pm z \sqrt{\frac{\frac{47}{350}(1 - \frac{47}{350})}{350}}$	M1	Must be a <i>z</i> value
	0.104 to 0.164 (3 sf)	A1	Must be an interval
		4	
6(iv)	1.25×1.645 (= 2.056)	M1	or $1.25 \times \text{their width} \div 2 \div \text{their } \sqrt{\frac{\frac{47}{350}(1-\frac{47}{350})}{350}}$ (Complete method)
	$\Phi(2.056)$ (= 0.980)	M1	Attempt $\Phi(\text{their } z)$
	x = 96 (2 sf)	A1	Allow 0.96 (2 sf) CWO
		3	