Question	Answer	Marks	Guidance
1(i)	Mean $=115$	B1	
	$\mathrm{SD}=40$	B1	
		2	
1(ii)	Mean $=15 \times 115{ }^{\prime}=1725$	B1ft	
	$15 \times{ }^{\text {' } 40{ }^{\prime 2}} \quad(=24000)$	M1	or SD $=\sqrt{ } 15 \times$ '40'. ft their (i)
	$\begin{aligned} & \mathrm{SD}=\sqrt{ } 24000 \\ & \mathrm{SD}=155 \text { (cents) }(3 \mathrm{sf}) \end{aligned}$	A1	Accept $\sqrt{ } 24000$ SC: Allow correct answers in dollars
		3	

Question	Answer	Marks	Guidance
2(i)	Assume sd still 4.8 or is unchanged	B1	or Assume the 150 times can be treated as a random sample / are independent
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=26.5 \\ & \mathrm{H}_{1}: \text { Pop mean }>26.5 \end{aligned}$	B1	Allow ' μ ' but not just 'mean'
	$\frac{27.5-26.5}{\frac{4.8}{\sqrt{150}}}$	M1	Standardise, with $\sqrt{ }$ Accept CV method
	$=2.552$	A1	
	Comp with z-value ' 2.552 ' > 2.326	M1	$\begin{aligned} & \text { or comp } 1-\Phi\left({ }^{(} 2.552^{\prime}\right) \text { with } 0.01 \\ & 1-0.9946=0.0054<0.01 \end{aligned}$
	There is evidence time has increased	A1ft	oe No contradictions (2 tail test scores max. B1 B0 M1 A1 M1 (for comparison with 2.576) A0 no ft)
		6	

Question	Answer	Marks	Guidance
2 2(ii)	No because pop is normal so distr of \bar{X} is normal	$\mathbf{B 1}$	Condone just 'No because pop is normal'
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3(i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(6)=\frac{1}{6} \\ & \mathrm{H}_{1}: \mathrm{P}(6)<\frac{1}{6} \end{aligned}$	B1	
	$\left(\frac{5}{6}\right)^{30}+30\left(\frac{1}{6}\right) \times\left(\frac{5}{6}\right)^{29}+{ }^{30} \mathrm{C}_{2}\left(\frac{1}{6}\right)^{2} \times\left(\frac{5}{6}\right)^{28}$	M1	Allow one term incorrect, omitted or extra
	$=0.103$	A1	
	${ }^{\prime} 0.103 '>0.05$	M1	
	No evidence (at 5\% level) that die biased	A1ft	oe No contradictions
		5	
3(ii)	$\left(\frac{5}{6}\right)^{30}+30\left(\frac{1}{6}\right) \times\left(\frac{5}{6}\right)^{29}$	M1	
	$\mathrm{P}($ Type I$)=0.0295$	A1	
		2	

Question	Answer	Marks	Guidance
4(a)(i)	$0.5 \times 1 / \mathrm{a}=\left(\frac{0.5}{a}\right)$	M1	Or attempt to integrate $\mathrm{f}(x)(=1 / \mathrm{a})$ between 0 and 0.5
	$=\frac{1}{2 a}$ oe	A1	Accept 0.5/a for A1
		2	
4(a)(ii)	$\frac{a}{2}$	B1	
		1	
4(a)(iii)	$\int_{0}^{a} \frac{x^{2}}{a} \mathrm{~d} x-\left({ }^{\left(\frac{a}{2}\right.}{ }^{\prime}\right)^{2}$	M1	Integ their $x^{2} \mathrm{f}(x)$ from 0 to a and sub their mean ${ }^{2}$
	$\begin{aligned} & \operatorname{Var}(X)=\frac{a^{2}}{3}-\frac{a^{2}}{4} \\ & \left(\operatorname{Var}(X)=\frac{a^{2}}{12} \quad \mathbf{A G}\right) \end{aligned}$	A1	Must see this line oe
		2	
4(b)	$\int_{2}^{b} \frac{3}{2(t-1)^{2}} \mathrm{dt}$	M1	Attempt integ $\mathrm{g}(t)$ ignore limits
	$\left[-\frac{3}{2(t-1)}\right]_{2}^{b}$	A1	Correct integral
	$\begin{aligned} & -\frac{3}{2}\left(\frac{1}{(b-1)}-1\right)=\frac{3}{4} \\ & \left(1-\frac{1}{(b-1)}=\frac{1}{2}\right) \end{aligned}$	M1	Attempt subst correct limits in their integ and $=\frac{3}{4}$
	$b=3$	A1	
		4	

Question	Answer	Marks	Guidance
5(a)(i)	$\mathrm{e}^{-2.3}\left(\frac{2.3^{2}}{2}+\frac{2.3^{3}}{3!}+\frac{2.3^{4}}{4!}\right.$	M1	Allow one end error
	$=0.585$	A1	
		2	
5(a)(ii)	$(\lambda)=4.6$	B1	
	$1-\mathrm{e}^{-4.6}\left(1+4.6+\frac{4.6^{2}}{2}\right)$	M1	any λ, Allow one end error
	$=0.837(3 \mathrm{sf})$	A1	
		3	
5(a)(iii)	$S \sim \mathrm{~N}(115,115)$	B1	May be implied
	$\frac{110.5-115}{\sqrt{115}} \quad(=-0.420)$	M1	Allow with wrong or no cc OR no V
	$1-\Phi\left({ }^{\prime} 0.420\right.$ ' $) \quad(=1-0.663)$	M1	
	$=0.337$	A1	Accept alternative method using $\mathrm{N}(2.3,2.3)$ no mixed methods.
		4	
5(b)	$\mathrm{e}^{-\lambda} \times \frac{\lambda^{3}}{3!}=\mathrm{e}^{-\lambda} \times \frac{\lambda^{5}}{5!}$	M1	
	$\lambda^{3}=\frac{\lambda^{5}}{4 \times 5}$ or $\lambda^{2}=20$ oe	A1	any correct simplification without $\mathrm{e}^{-\lambda}$ or !
	$\lambda=\sqrt{ } 20$ or $2 \sqrt{ } 5$ or $4.47(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Biased towards people who like tennis Excludes people who don't like tennis	B1	or other sensible
		1	
6(ii)	Obtain a list of all people in the town	B1	
	Use random numbers	B1	or, e.g. pick numbers from a hat or other sensible
		2	
6(iii)	$\operatorname{Var}(p)=\frac{\frac{47}{350}\left(1-\frac{47}{350}\right)}{350}(=0.000332152)$	M1	
	$z=1.645$	B1	
	$\frac{47}{350} \pm z \sqrt{\frac{\frac{47}{350}\left(1-\frac{47}{350}\right)}{350}}$	M1	Must be a z value
	0.104 to 0.164 (3 sf)	A1	Must be an interval
		4	
6(iv)	$1.25 \times 1.645 \quad(=2.056)$	M1	or $1.25 \times$ their width $\div 2 \div$ their $\sqrt{\frac{\frac{47}{350}\left(1-\frac{47}{350}\right)}{350}}$ (Complete method)
	$\Phi\left({ }^{\prime} 2.056\right) \quad(=0.980)$	M1	Attempt $\Phi($ their z)
	$x=96 \quad(2 \mathrm{sf})$	A1	Allow 0.96 (2 sf) CWO
		3	

