Question	Answer	Marks	Guidance
1(i)	$\begin{aligned} & \mathrm{P}(79<X<91)=\mathrm{P}\left(\frac{79-85}{6.8}<Z<\frac{91-85}{6.8}\right) \\ & =\mathrm{P}(-0.8824<Z<0.8824) \end{aligned}$	M1	Using \pm standardisation formula for either 79 or 91 , no continuity correction
	$\begin{aligned} &=\Phi(0.8824)-\Phi(-0.8824) \\ &=0.8111-(1-0.8111) \end{aligned}$	M1	Correct area ($\Phi-\Phi$) with one + ve and one -ve z -value or $2 \Phi-1$ or 2($\Phi-0.5$)
	$=0.622$	A1	Correct answer
		3	
1(ii)	$z=-1.751$	B1	± 1.751 seen
	$-1.751=\frac{t-85}{6.8}$	M1	An equation using \pm standardisation formula with a z-value, condone σ^{2} or $\sqrt{ } \sigma$
	$t=73.1$	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
2(ii)	$\mathrm{P}(\text { email } \mid N R)=\frac{\mathrm{P}(\mathrm{email} \cap \mathrm{NR})}{\mathrm{P}(\mathrm{NR})}=\frac{0.2 \times 0.85}{0.3 \times 0.6+0.2 \times 0.85+0.5 \times 0.4}$	M1	$\mathrm{P}(\mathrm{email}) \times \mathrm{P}(\mathrm{NR})$ seen as numerator of a fraction, consistent with their tree diagram
	$=\frac{0.17}{0.18+0.17+0.2}=\frac{0.17}{0.55}$	M1	Summing three appropriate 2-factor probabilities, consistent with their tree diagram, seen anywhere 0.55 oe (can be unsimplified) seen as denom of a fraction
	$=0.309, \frac{17}{55}$	A1	
		A1	Correct answer
		4	

Question	Answer	Marks	Guidance
3(i)	$9!\times 2$	B1	9 ! seen multiplied by $k \geqslant 1$, no addition
	$=725760$	B1	Exact value
		2	
3(ii)	$\operatorname{Eg}\left(\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3} \mathrm{~K}_{4} \mathrm{~K}_{5}\right)$ A A A $\left(\mathrm{U}_{1} \mathrm{U}_{2}\right)$ A	B1	2 ! or 5 ! seen mult by $\mathrm{k}>1$, no addition (arranging Us or Ks)
	$=5!\times 2!\times 6!$	B1	6 ! Seen mult by k >1, no addition (arranging AAAAKU)
	$=172800$	B1	Exact value
		3	

Question	Answer	Marks	Guidance
4(i)	$\mathrm{M}(8)$ $\mathrm{W}(4)$ 4 2 in ${ }^{8} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{2}=420$ ways 5 1 in ${ }^{8} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{1}=224$ ways 6 0 in ${ }^{8} \mathrm{C}_{6} \times{ }^{4} \mathrm{C}_{0}=28$ ways	B1	One unsimplified product correct
		M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios
	Total 672 ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
4(ii)	Total number of selections $={ }^{12} \mathrm{C}_{6}=924(\mathrm{~A})$	M1	${ }^{12} \mathrm{C}_{x}-$ (subtraction seen), accept unsimplified
	Selections with males together $={ }^{10} \mathrm{C}_{4}=210$ (B)	A1	Correct unsimplified expression
	Total $=(\mathrm{A})-(\mathrm{B})=714$	A1	Correct answer
	Alternative method for question 4(ii)		
	No males + Only male $1+$ Only male 2 $={ }^{10} \mathrm{C}_{6}+{ }^{10} \mathrm{C}_{5}+{ }^{10} \mathrm{C}_{5}$	M1	${ }^{10} \mathrm{C}_{x}+2 \mathrm{x}{ }^{10} \mathrm{C}_{y}, x \neq y$ seen, accept unsimplified
	$=210+252+252$	A1	Correct unsimplified expression
	$=714$	A1	Correct answer
	Alternative method for question 4(ii)		
	Pool without male $1+$ Pool without male $2-$ Pool without either male	M1	$2 \mathrm{x}{ }^{11} \mathrm{C}_{\mathrm{x}}-{ }^{10} \mathrm{C}_{\mathrm{x}}$
	$\begin{aligned} & ={ }^{11} \mathrm{C}_{6}+{ }^{11} \mathrm{C}_{6}-{ }^{10} \mathrm{C}_{6} \\ & =462+462-210 \end{aligned}$	A1	Correct unsimplified expression
	$=714$	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{P}(0,1,2)=(0.66){ }^{14}+{ }^{14} \mathrm{C}_{1}(0.34)(0.66){ }^{13}+{ }^{14} \mathrm{C}_{2}(0.34)^{2}(0.66){ }^{12}$	M1	Binomial term of form ${ }^{14} \mathrm{C}_{x} p^{x}(1-p)^{14-x} 0<p<1$ any $p, x \neq 14,0$
	$=0.0029758+0.02146239+0.071866$	A1	Correct unsimplified answer
	$=0.0963$	A1	Correct answer
		3	
5(ii)	Mean $=600 \times 0.34=204, \operatorname{Var}=600 \times 0.34 \times 0.66=134.64$	B1	Correct unsimplified $n p$ and $n p q$ (or sd $=11.603$ or Variance $=$ 3366/25)
	$\mathrm{P}(<190)=\mathrm{P}\left(z<\frac{189.5-204}{19+}\right)=\mathrm{P}(\mathrm{z}<-1.2496)$	M1	Substituting their μ and σ, (no σ^{2} or $\sqrt{ } \sigma$) into the Standardisation Formula with a numerical value for ' 189.5 '. Condone \pm standardisation formula
		M1	Using continuity correction 189.5 or 190.5 within a Standardisation formula
	$=1-\Phi(1.2496)$	M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}<\ldots$.$) in final$ solution, $(<0.5$ if z is $-\mathrm{ve},>0.5$ if z is +ve$)$
	$=1-0.8944=0.106$	A1	Correct final answer
		5	

Question	Answer	Marks	Guidance
7(i)	Thaters School Whitefay Park School	B1	Correct stem can be upside down, ignore extra values,
	$\begin{array}{lllllll\|l\|lll} \hline & & & & & 8 & 3 & & & \\ & & & & & 8 & 3 & 4 & 5 & 7 & \\ 8 & 8 & 7 & 6 & 4 & 2 & 5 & 3 & 6 & 6 \end{array}$	B1	Correct Thaters School labelled on left, leaves in order from right to left and lined up vertically, no commas
	$\begin{array}{lll\|l\|llll} 6 & 2 & 1 & 6 & 1 & 4 & 6 & 9 \\ & & 5 & 7 & 3 & 5 & 8 & \\ & & & 8 & 3 & & & \end{array}$	B1	Correct Whitefay Park School labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
	Key 8 4 5 represents 48 minutes for Thaters School and 45 minutes for Whitefay Park School.	B1	FT Correct key for their diagram, need both teams identified and 'minutes' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria
		4	
7(ii)	$\begin{aligned} & \mathrm{LQ}=50 \\ & \mathrm{UQ}=61.5 \end{aligned}$	B1	Both quartiles correct
	IQ range $=61.5-50=11.5$	B1	FT $61 \leqslant \mathrm{UQ} \leqslant 62-48 \leqslant L \mathrm{~L} \leqslant 52$
		2	
7(iii)	$\begin{aligned} & \Sigma(\mathrm{x}-60)^{2}=(-15)^{2}+(-13)^{2}+(-7)^{2}+(-4)^{2}+(-4)^{2}+1^{2}+4^{2}+6^{2}+ \\ & 9^{2}+13^{2}+23^{2}+15^{2}+18^{2} \end{aligned}$	M1	Summing squares with at least 5 correct unsimplified terms
	$=1856$	A1	Exact value
		2	

Question	Answer	Marks	Guidance
7 7(iv)	Var $=$ mean of coded squares $-(\text { coded mean })^{2}$ $=\frac{\sum(x-60)^{2}}{13}-\left(\frac{\sum(x-60)}{13}\right)^{2}$	M1	
	Var $=\frac{\text { their } 1856}{13}-\left(\frac{46}{13}\right)^{2}$ $=130$	A1	Correct answer
SC if correct variance obtained by another method give SCB1			
		$\mathbf{2}$	

