Question	Answer	Marks	Guidance
1	$\mathrm{P}(\mathrm{~S})=\frac{1}{2}$	B1	
	$\mathrm{P}(T)=\frac{16}{36}\left(\frac{4}{9}\right)$	B1	
	$\mathrm{P}(S \cap T)=\frac{10}{36}\left(\frac{5}{18}\right)$	M1	$\mathrm{P}(S \cap T)$ found by multiplication scores M0 M1 awarded if their value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)
	$\mathrm{P}(S) \mathrm{P}(T) \neq \mathrm{P}(S \cap T)$ so not independent	A1	$8 / 36,10 / 36 \mathrm{P}(\mathrm{S}) \times \mathrm{P}(\mathrm{T})$ and $\mathrm{P}(S \cap T)$ seen in workings and correct conclusion stated, www
	Alternative method for question 1		
	$\mathrm{P}(\mathrm{~S})=\frac{1}{2}$	B1	
	$\mathrm{P}(T)=\frac{16}{36}\left(\frac{4}{9}\right)$	B1	
	$\mathrm{P}(S \cap T)=\frac{10}{36}\left(\frac{5}{18}\right)$	M1	$\mathrm{P}(S \cap T)$ found by multiplication scores M0 M1 awarded if their value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)
	$\mathrm{P}(\mathrm{~S} \mid \mathrm{T})=\frac{10}{16} \text { or } \mathrm{P}(\mathrm{~T} \mid \mathrm{S})=\frac{10}{18}$ $\mathrm{P}(\mathrm{S} \mid \mathrm{T}) \neq \mathrm{P}(\mathrm{S})$ or $\mathrm{P}(\mathrm{T} \mid \mathrm{S}) \neq \mathrm{P}(\mathrm{T})$ so not independent	A1	Either $18 / 36,10 / 16, \mathrm{P}(\mathrm{S})$ and $\mathrm{P}(S \mid T)$ seen in workings and correct conclusion stated, www Or $16 / 36,10 / 18, \mathrm{P}(\mathrm{T})$ and $\mathrm{P}(\mathrm{T} \mid \mathrm{S})$ seen in workings and correct conclusion stated, www
		4	

Question	Answer	Marks	Guidance
2	$\mathrm{P}(<28.9)=\mathrm{P}\left(z<\frac{28.9-30}{1.5}\right)$	B1	Using \pm standardising formula, no continuity correction, not σ^{2} or $\sqrt{ } \sigma$,
	$\begin{aligned} & =\mathrm{P}(z<-0.733) \\ & =1-0.7682 \end{aligned}$	M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}<\ldots$.$) in final$ probability solution, Must be a probability, e.g. $1-0.622$ is M0
	$=0.2318$	A1	Correct final probability rounding to 0.232 . (Only requires M1 not B1 to be awarded
	Number of cartridges is their 0.2318×8 $=1.85$, so 2 (Also accept 1 but not both)	B1	FT using their 4 SF (or better) value, ans. rounded or truncated to integer, no approximation indicated.
		4	

Question	Answer	Marks	Guidance
3(i)	$\begin{aligned} & \mathrm{P}(\text { at most } 7)=1-\mathrm{P}(8,9,10) \\ & =1-{ }^{10} \mathrm{C} 8(0.35)^{8}(0.65)^{2}-{ }^{10} \mathrm{C}_{9}(0.35)^{9}(0.65)^{1}-(0.35)^{10} \end{aligned}$	M1	Use of normal approximation M0 Binomial term of form ${ }^{10} \mathrm{C}_{x} p^{x}(1-p)^{10-x} \quad 0<p<1$ any $p, x \neq 10,0$
	[$=1-0.004281-0.0005123-0.00002759]$	A1	Correct unsimplified (or individual terms evaluated) answer seen Condone $1-\mathrm{A}+\mathrm{B}+\mathrm{C}$ leading to correct solution
	$=0.995$	B1	B1 not dependent on previous marks.
	Alternative method for question 3(i)		
	$\mathrm{P}($ at most 7$)=\mathrm{P}(0,1,2,3,4,5,6,7)$	M1	Binomial term of form ${ }^{10} \mathrm{C}_{x} p^{x}(1-p)^{10-x} \quad 0<p<1$ any $p, x \neq 10,0$
	$=(0.65)^{10}+{ }^{10} \mathrm{C} 1(0.35)^{1}(0.65)^{9}+\ldots+{ }^{10} \mathrm{C}_{7}(0.35)^{7}(0.65)^{3}$	A1	Correct unsimplified answer or individual terms evaluated seen
	$=0.995$	B1	
		3	
3(ii)	$\begin{aligned} & 1-(0.65)^{n}>0.99 \\ & 0.01>(0.65)^{n} \end{aligned}$	M1	Equation or inequality with $(0.65)^{n}$ and 0.01 or $(0.35)^{n}$ and 0.99 only (Note $1-0.99$ is equivalent to 0.01 etc.)
	$n>10.69$	M1	Solving their $a^{n}=c, 0<a, c<1$ using logs or Trial and Error If answer inappropriate, at least 2 trials are required for Trial and Error M mark
	smallest $n=11$	A1	CAO
		3	

Question	Answer	Marks	Guidance
4	$z=0.842=\left(\frac{121-\mu}{\sigma}\right)$ so $0.842 \sigma=121-\mu$	B1	± 0.842 seen but B0 if 1 ± 0.842 oe seen
		M1	One appropriate standardisation equation with a z-value, μ, σ and 121 or 102 , condone continuity correction. Not $0.158,0.42, \ldots$
	$z=-0.58=\left(\frac{102-\mu}{\sigma}\right)$ so $-0.58 \sigma=102-\mu$	B1	$\pm 0.58(0)$ seen but B0 if 1 ± 0.58 oe seen
	Solving	M1	Correct algebraic elimination of μ or σ from their two simultaneous equations to form an equation in one variable, condone 1 numerical slip
	$\sigma=13.4 \quad \mu=110$	A1	If M0A0 scored (i.e. no algebraic elimination seen), SC B1 can be awarded for both answers correct Consistent use of σ^{2} or $\sqrt{ } \sigma$ throughout apply MR penalty to A mark or SC B mark.
		5	

Question	Answer	Marks	Guidance
5(iv)	$\mathrm{P}\left(1^{\text {st }} \mathrm{C} \mid 2^{\text {nd }} \mathrm{T}\right)=\frac{P(C \cap T)}{P(T)}=\frac{\frac{1}{7} \times \frac{6}{9}}{\frac{1}{7} \times \frac{6}{9}+\frac{6}{7} \times \frac{5}{9}}=\frac{\frac{6}{63}}{\frac{36}{63}}$	B1	$\mathrm{P}(\mathrm{C} \cap \mathrm{T})$ attempt seen as numerator of a fraction, consistent with their tree diagram or correct
		M1	Summing 2 appropriate two-factor probabilities, consistent with their tree diagram or correct seen anywhere
		A1	$\frac{36}{63}$ oe or correct unsimplifed expression seen as numerator or denominator of a fraction
	$\frac{1}{6}$ oe	A1	Final answer
		4	

Question	Answer	Marks	Guidance
6(i)	Advantage: comment referring to spread or range or shape	B1	Comments referring to quartiles, IQR, Range, median, shape, skewness, data distribution, spread score B1 Any comments with reference to mean or standard deviation or any other 'disadvantage' will score B0 Comments referring to ' 5 -value plot', comparison with another data set, overview or ease of drawing/plotting/reading require an appropriate advantage statement.
	Disadvantage: comment referring to limited data information provided	B1	Comments referring to no individual data, no information about the number of values, unable to calculate mean, standard deviation, variance and mode score B1 Any comments with reference to median, shape or any other 'advantage' will score B0 Comments referring to 'size of data set' or 'average' require an appropriate disadvantage statement. Comments referring to outliers are ignored in all cases (as outliers are not in the syllabus content) unless supported by an appropriate advantage / disadvantage statement. If comments not clearly identified, assume first comment is the advantage.
		2	

Question	Answer	Marks	Guidance
$6(\mathrm{iii})(\mathrm{b})$	$\mathrm{IQR}=$ their $329-$ their $256=73$ or 72.5	B1	FT Must follow through only from their stated values (condone if correct quartiles stated here), not reading from graph.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(a)	${ }^{6} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{2} \times{ }^{1} \mathrm{C}_{1}$	M1	${ }^{6} \mathrm{C}_{\mathrm{a}} \times{ }^{6-\mathrm{a}} \mathrm{C}_{\mathrm{b}} \times{ }^{6-\mathrm{ab}} \mathrm{C}_{6-\mathrm{ab}}$ seen oe ${ }^{6-\mathrm{ab}} \mathrm{C}_{6-\mathrm{ab}}$ can be implied by 1 or omission, condone use of permutations,
	$=20 \times 3$	A1	Any correct method seen no addition/additional scenarios
	$=60$	A1	Correct answer
	Alternative method for question 7(a)		
	$\frac{{ }^{6} \mathrm{P}_{6}}{6!}$	M1	${ }^{6} \mathrm{P}_{6} /\left({ }^{n} \mathrm{P}_{n} \mathrm{x} k\right)$ with $3 \geqslant n>1$ and $6 \geqslant \mathrm{k}$ an integer $\geqslant 1$, not $6!/ 1$
	${ }^{3} \mathrm{P}_{3} \times{ }^{2} \mathrm{P}_{2} \times{ }^{1} \mathrm{P}_{1} \quad=\overline{3!\times 2!}$	A1	Correct method with no additional terms
	$=60$	A1	Correct answer
		3	
7(b)(i)	$\frac{4!}{3!} \times \frac{3!}{2!} \times 2$	M1	A single expression with either $4!/ 3!\times k$ or $3!/ 2!\times \mathrm{k}$, k a positive integer seen oe (condone 2 identical expressions being added)
		M1	Correctly multiplying their single expression by 2 or 2 identical expressions being added.
	$=24$	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
7(b)(ii)	Total no of arrangements $=\frac{7!}{2!3!}=420(\mathrm{~A})$	B1	Accept unsimplified
	No with 2 s together $=\frac{6!}{3!}=120(B)$	B1	Accept unsimplified
	With 2s not together: their (A) - their (B)	M1	Subtraction indicated, possibly by their answer, no additional terms present
	$=300$ ways	A1	Exact value www
	Alternative method for question 7(b)(ii)		
	$3_{-}{ }_{-}{ }^{7}-7{ }_{-}{ }^{8}$		
	$5!\times \frac{6 \times 5}{}$	B1	$k \times 5$! in numerator, k a positive integer
		B1	$m \times 3!$ In denominator, m a positive integer
		M1	Their 5!/3! multiplied by ${ }^{6} \mathrm{C}_{2}$ only (no additional terms)
	$=300$ ways	A1	Exact value www
		4	

