Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 61

Question	Answer	Marks	Guidance
1(i)	$\Sigma(t - 120) = -25 + 6 - 3 + 15 + 0 + 5 - 6 - 1 + 16 = 7$	M1	Attempt to sum both $(t - 120)$ and $(t - 120)^2$ Correct ans using $\Sigma t - 9 \times 120$ and $\Sigma (t - 120)^2$ M1A1
	$\Sigma(t - 120)^2 = 25^2 + 6^2 + 3^2 + 15^2 + 0^2 + 5^2 + 6^2 + 1^2 + 16^2$ = 1213	A1	Both correct, www, SC correct ans no working B1B1
		2	
1(ii)	$\operatorname{Var} = \frac{\Sigma(t-120)^2}{9} - \left(\frac{\Sigma(t-120)}{9}\right)^2 = \frac{their 1213}{9} - \left(\frac{their 7}{9}\right)^2$	M1	Using two coded values in correct formula including finding Σt from 7 etc
	= 134(.2)	A1	Correct answer SC if correct variance obtained by another method from raw data give SCB1
		2	

Question	Answer	Marks	Guidance
2	2 Jameel: P(plum) = $\frac{5}{8}$, Rosa: P(plum) = $\frac{x}{x+6}$ $\frac{5}{8} \times \frac{x}{x+6} = \frac{1}{4}$	M1	Their 2 probabilities for P(plum) multiplied and equated to 1/4
		A1	Correct equation oe
	(x =) 4	A1	SC correct answer with no appropriate equations i.e. common sense B1
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3	$P(X) = \frac{3}{36} \left(\frac{1}{12}oe\right)$	B1	
	$P(Y) = \frac{12}{36} \left(\frac{1}{3}oe\right)$	B1	
	$P(X \cap Y) = \frac{1}{36}$	M1	Independent method to find $P(X \cap Y)$ without multiplication, either stated or by listing or circling numbers on a probability space diagram. OR condititional prob with a single fraction numerator
	$P(X) \times P(Y) = P(X \cap Y)$, independent	A1	Numerical comparison and conclusion, www
		4	

Question	Answer	Marks	Guidance
4	Median Maths = 40	M1	Indication of finding medians, such as mark on graph or reference marks to 700 pupils, condone poor terminology such as 'mean'
	Median English = 55	A1	Both values correct, condone 54 <english<56 54,="" 56="" a0<="" but="" get="" td=""></english<56>
	Median of English is larger than median of Maths	B1	Correct statement, median must be referenced within answer. No credit if statement references 'means'
	Range Maths is 100 or IQ range Maths = $80 - 12 = 68$	M1	Evidence of finding either both ranges or both IQ ranges i.e. see a minus
	Range English is 60 or IQ range English = $62 - 42 = 20$	A1	Both ranges or IQR correct
	Maths marks have more spread then English marks	B1	Correct conclusion. Accept standard deviation but must see some figures
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

Question	Answer	Marks	Guidance
5(i)	(P > 12) = P(13, 14, 15)	M1	Binomial term of form ${}^{15}C_x p^x (1-p)^{15-x} 0 any p, x \neq 15, 0$
	$= {}^{15}C_{13}(0.65)^{13}(0.35)^2 + {}^{15}C_{14}(0.65)^{14}(0.35)^1 + (0.65)^{15}$	A1	Correct unsimplified answer
	= 0.0617	A1	SC if use np and npq with justification give $(12.5 - 9.75)/\sqrt{3.41}$ M1 1-F(1.489) A1 0.0681 A0
		3	
5(ii)	mean = $250 \times 0.65 = 162.5$ variance = $250 \times 0.65 \times 0.35 = 56.875$	B1	Correct unsimplified <i>np</i> and <i>npq</i>
	$P(<179) = P(z < \frac{178.5 - 162.5}{\sqrt{56.875}}) = P(z < 2.122)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the Standardisation Formula with a numerical value for '178.5'. Continuity correct not required for this M1. Condone \pm standardisation formula
	Using continuity correction 178.5 or 179.5	M1	
	= 0.983	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
6(i)	$P(\text{loses }\$1) = P(F \text{ and } F) = 0.8 \times 0.8$	M1	0.8 x 0.8 or $(1 - 0.2)(1-0.2)$ or P(F) × P(F) or P(F)+P(F) seen or implied
	= 0.64 AG	A1	Must see probabilities multiplied together with final answer and a clear probability statement or implied by labelled tree diagram
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

Question	Answer					Marks	Guidance
6(ii)	Amount	1	0.50	2		B1	-1 linked with 0.64 in table
	gained (\$)	-1	0.50	2	2		0.5 seen in table
	Prob		0.16	0.2		B1	0.16 seen in table linked to their 0.5
						B1	FT $P(2.00 \text{ gained}) = 0.36 - P(0.50 \text{ gained})$ or correct, and all amount gained linked correctly in table
						4	
6(iii)	$E(\text{winnings}) = -1 \times 0$ = -(\$)0.16, -16 cen		$6 + 2 \times 0.2$			B1	FT Accept (\$)0.16 or 16 cents loss. FT unsimplified E(winnings) from their table provided $\Sigma p = 1$
						1	

Question	Answer	Marks	Guidance
7(i)	P (< 700) = P $\left(z < \frac{700 - 830}{120}\right)$ = P(z < -1.083)	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	= 1 - 0.8606	M1	Appropriate area Φ from standardisation formula P(z<) in final probability solution, (<0.5 if <i>z</i> is -ve, >0.5 if <i>z</i> is +ve)
	= 0.1394	A1	Correct final probability rounding to 0.139
	Expected number of female adults = $430 \times their \ 0.1394$ = 59.9 So 59 or 60	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

Question	Answer	Marks	Guidance
7(ii)	P(giraffe < 830+w) = 95% so $z = 1.645$	B1	±1.645 seen (critical value)
	$\frac{(830+w)-830}{120} = \frac{w}{120} = 1.645$	M1	An equation using the standardisation formula with a <i>z</i> -value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$ not 0.8519, 0.8289
	<i>w</i> = 197	A1	Correct answer
		3	
7(iii)	P(male > 950) = 0.834, so $z = -0.97$	B1	± 0.97 seen
	$\frac{950-1190}{\sigma} = -0.97$	M1	Using \pm standardisation formula, condone continuity correction, σ^2 or $\sqrt{\sigma}$, condone equating with non <i>z</i> -value not 0.834, 0.166
	$\sigma = 247$	A1	Condone $-\sigma = -247$. www.
		3	

Question	Answer	Marks	Guidance
8(i)	$({}^{9}C_{4} =) 126$	B1	
		1	
8(ii)	⁷ C ₂	B1	$^{7}C_{x}$ or $^{y}C_{2}$ (implied by correct answer) or $^{7}P_{x}$ or $^{7}P_{y}$, seen alone
	= 21	B1	correct answer
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

Question	Answer	Marks	Guidance
8(iii)	$ _C_1 (B_1 B_2 B_3) C_2 _C_3 _C_4 _C_5 _C_6 $	B1	3! or 6! seen alone or multiplied by $k > 1$ need not be an integer
	3! × 6! × 7	B1	3! and 6! seen multiplied by $k > 1$, integer, no division
	= 30240	B1	Exact value
	Alternative method for question 8(iii)		
	$C_1 (B_1 B_2 B_3) C_2 C_3 C_4 C_5 C_6$	B1	3! or 7! seen alone or multiplied by $k > 1$ need not be an integer
	3! × 7!	B1	3! and 7! seen multiplied by $k > or = 1$, no division
	= 30240	B1	Exact value
		3	
8(iv)	$C_1 _ C_2 _ C_3 _ C_4 _ C_5 _ C_6$	B1	6! or 4! X 6P2 seen alone or multiplied by k > 1, no division (arrangements of cars)
	$6! \times 5P3 \text{ or } 6! \times 5 \times 4 \times 3 \text{ or } 6! \ge 3! \ge 10$	B1	Multiply by 5P3 oe i.e. putting Bs in between 4 of the Cs OR multiply by 3! x n where n = 7, 8, 9, 10 (number of options)
	= 43200	B1	Correct answer
		3	