Question	Answer	Marks	Guidance
1(i)	$\Sigma(t-120)=-25+6-3+15+0+5-6-1+16=7$	M1	Attempt to sum both $(t-120)$ and $(t-120)^{2}$ Correct ans using $\Sigma t-9 \times 120$ and $\Sigma(t-120)^{2}$ M1A1
	$\begin{aligned} & \Sigma(t-120)^{2}=25^{2}+6^{2}+3^{2}+15^{2}+0^{2}+5^{2}+6^{2}+1^{2}+16^{2} \\ & \quad=1213 \end{aligned}$	A1	Both correct, www, SC correct ans no working B1B1
		2	
1(ii)	$\operatorname{Var}=\frac{\sum(t-120)^{2}}{9}-\left(\frac{\sum(t-120)}{9}\right)^{2}=\frac{\text { their } 1213}{9}-\left(\frac{\text { their } 7}{9}\right)^{2}$	M1	Using two coded values in correct formula including finding Σt from 7 etc
	$=134(.2)$	A1	Correct answer SC if correct variance obtained by another method from raw data give SCB1
		2	

Question	Answer	Marks	Guidance
2	Jameel: $\mathrm{P}($ plum $)=\frac{5}{8}$ Rosa: $\mathrm{P}($ plum $)=\frac{x}{x+6}$	M1	Their 2 probabilities for P (plum) multiplied and equated to $1 / 4$
	$\frac{5}{8} \times \frac{x}{x+6}=\frac{1}{4}$	A1	Correct equation oe
	$(x=) 4$	A1	SC correct answer with no appropriate equations i.e. common sense B1
		3	

Question	Answer	Marks	Guidance
3	$\mathrm{P}(\mathrm{X})=\frac{3}{36}\left(\frac{1}{12} o e\right)$	B1	
	$\mathrm{P}(\mathrm{Y})=\frac{12}{36}\left(\frac{1}{3} o e\right)$	B1	
	$\mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\frac{1}{36}$	M1	Independent method to find $\mathrm{P}(X \cap Y)$ without multiplication, either stated or by listing or circling numbers on a probability space diagram. OR condititional prob with a single fraction numerator
	$\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{Y})=\mathrm{P}(\mathrm{X} \cap \mathrm{Y})$, independent	A1	Numerical comparison and conclusion, www
		4	

Question	Answer	Marks	Guidance
4	Median Maths $=40$	M1	Indication of finding medians, such as mark on graph or reference marks to 700 pupils, condone poor terminology such as 'mean'
	Median English $=55$	A1	Both values correct, condone $54<$ English <56 but 54,56 get A0
	Median of English is larger than median of Maths	B1	Correct statement, median must be referenced within answer. No credit if statement references 'means'
	Range Maths is 100 or IQ range Maths $=80-12=68$	M1	Evidence of finding either both ranges or both IQ ranges i.e. see a minus
	Range English is 60 or IQ range English $=62-42=20$	A1	Both ranges or IQR correct
	Maths marks have more spread then English marks	B1	Correct conclusion. Accept standard deviation but must see some figures
		6	

Question	Answer	Marks	Guidance
5(i)	$(\mathrm{P}>12)=\mathrm{P}(13,14,15)$	M1	Binomial term of form ${ }^{15} \mathrm{C}_{x} p^{x}(1-p)^{15-x} 0<p<1$ any $p, x \neq 15,0$
	$={ }^{15} \mathrm{C}_{13}(0.65)^{13}(0.35){ }^{2}+{ }^{15} \mathrm{C}_{14}(0.65)^{14}(0.35){ }^{1}+(0.65)^{15}$	A1	Correct unsimplified answer
	$=0.0617$	A1	SC if use np and npq with justification give $(12.5-9.75) / \sqrt{3.41} \mathrm{M} 1$ 1-F(1.489) A1 0.0681 A0
		3	
5(ii)	$\begin{aligned} & \text { mean }=250 \times 0.65=162.5 \\ & \text { variance }=250 \times 0.65 \times 0.35=56.875 \end{aligned}$	B1	Correct unsimplified $n p$ and $n p q$
	$\mathrm{P}(<179)=\mathrm{P}\left(\mathrm{z}<\frac{178.5-162.5}{\sqrt{56.875}}\right)=\mathrm{P}(\mathrm{z}<2.122)$	M1	Substituting their μ and σ (condone σ^{2}) into the Standardisation Formula with a numerical value for ' 178.5 '. Continuity correct not required for this M1. Condone \pm standardisation formula
	Using continuity correction 178.5 or 179.5	M1	
	$=0.983$	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	$\mathrm{P}($ loses $\$ 1)=\mathrm{P}(\mathrm{F}$ and F$)=0.8 \times 0.8$	M1	0.8×0.8 or $(1-0.2)(1-0.2)$ or $\mathrm{P}(\mathrm{F}) \times \mathrm{P}(\mathrm{F})$ or $\mathrm{P}(\mathrm{F})+\mathrm{P}(\mathrm{F}) \mathrm{seen}$ or implied
	$=0.64 \mathrm{AG}$	$\mathbf{A 1}$	Must see probabilities multiplied together with final answer and a clear probability statement or implied by labelled tree diagram
		$\mathbf{2}$	

Question	Answer				Marks	Guidance
6(ii)	Amount gained (\$)	-1	0.50	2	B1	-1 linked with 0.64 in table
					B1	0.5 seen in table
	Prob		0.16	0.2	B1	0.16 seen in table linked to their 0.5
					B1	FT $\mathrm{P}(2.00$ gained $)=0.36-\mathrm{P}(0.50$ gained $)$ or correct, and all amount gained linked correctly in table
					4	
6(iii)	$\begin{aligned} & \mathrm{E}(\text { winnings })=-1 \times 0.64+0.5 \times 0.16+2 \times 0.2 \\ & \quad=-(\$) 0.16,-16 \text { cents } \end{aligned}$				B1	FT Accept (\$)0.16 or 16 cents loss. FT unsimplified E(winnings) from their table provided $\Sigma p=1$
					1	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{P}(<700)=\mathrm{P}\left(z<\frac{700-830}{120}\right)=\mathrm{P}(\mathrm{z}<-1.083)$	M1	Using \pm standardisation formula, no continuity correction, not σ^{2} or V_{σ}
	$=1-0.8606$	M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}<\ldots$.$) in final$ probability solution, (<0.5 if z is $-\mathrm{ve},>0.5$ if z is +ve)
	$=0.1394$	A1	Correct final probability rounding to 0.139
	$\begin{aligned} & \text { Expected number of female adults }=430 \times \text { their } 0.1394 \\ & =59.9 \text { So } 59 \text { or } 60 \end{aligned}$	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	

Question	Answer	Marks	Guidance
7(ii)	$\mathrm{P}($ giraffe $<830+w)=95 \%$ so $z=1.645$	B1	± 1.645 seen (critical value)
	$\frac{(830+w)-830}{120}=\frac{w}{120}=1.645$	M1	An equation using the standardisation formula with a z-value (not $1-z$), condone σ^{2} or $\sqrt{ } \sigma$ not $0.8519,0.8289$
	$w=197$	A1	Correct answer
		3	
7(iii)	$\mathrm{P}($ male $>950)=0.834$, so $z=-0.97$	B1	± 0.97 seen
	$\frac{950-1190}{\sigma}=-0.97$	M1	Using \pm standardisation formula, condone continuity correction, σ^{2} or $\sqrt{ } \sigma$, condone equating with non z-value not $0.834,0.166$
	$\sigma=247$	A1	Condone $-\sigma=-247$. www.
		3	

Question	Answer	Marks	Guidance
$8(\mathrm{i})$	$\left({ }^{9} \mathrm{C}_{4}=\right) 126$	$\mathbf{B 1}$	
		$\mathbf{1}$	
$8(\mathrm{ii})$	${ }^{7} \mathrm{C}_{2}$	$\mathbf{B 1}$	${ }^{7} \mathrm{C}_{\mathrm{x}}$ or ${ }^{\mathrm{y}} \mathrm{C}_{2}$ (implied by correct answer) or ${ }^{7} \mathrm{P}_{\mathrm{x}}$ or ${ }^{7} \mathrm{P}_{\mathrm{y}}$, seen alone
	$=21$	$\mathbf{B 1}$	correct answer
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
8(iii)	${ }_{-} \mathrm{C}_{1}\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}\right) \mathrm{C}_{2}{ }_{-} \mathrm{C}_{3}{ }_{-} \mathrm{C}_{4}{ }_{-} \mathrm{C}_{5}{ }_{-} \mathrm{C}_{6}$	B1	3 ! or 6 ! seen alone or multiplied by $\mathrm{k}>1$ need not be an integer
	$3!\times 6!\times 7$	B1	3 ! and 6 ! seen multiplied by $\mathrm{k}>1$, integer, no division
	$=30240$	B1	Exact value
	Alternative method for question 8(iii)		
	$\mathrm{C}_{1}\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}\right) \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	B1	3 ! or 7 ! seen alone or multiplied by $\mathrm{k}>1$ need not be an integer
	$3!\times 7$!	B1	3 ! and 7 ! seen multiplied by $\mathrm{k}>$ or $=1$, no division
	$=30240$	B1	Exact value
		3	
8(iv)	$\mathrm{C}_{1} \mathrm{C}_{2}{ }_{-} \mathrm{C}_{3} \mathrm{C}_{4}{ }_{-} \mathrm{C}_{5} \mathrm{C}_{6}$	B1	6 ! or 4 ! X 6P2 seen alone or multiplied by $\mathrm{k}>1$, no division (arrangements of cars)
	$6!\times 5 \mathrm{P} 3$ or $6!\times 5 \times 4 \times 3$ or $6!\times 3!\times 10$	B1	Multiply by 5P3 oe i.e. putting Bs in between 4 of the Cs OR multiply by $3!\mathrm{x} \mathrm{n}$ where $\mathrm{n}=7,8,9,10$ (number of options)
	$=43200$	B1	Correct answer
		3	

