Question	Answer	Marks	Guidance
1(i)	$k=\frac{g}{2}=5$	B1	Use the trajectory equation from the formula sheet
		1	
1 (ii)	$V \sin 30=14$	M1	Use the trajectory equation from the formula sheet
	$V=28 \mathrm{~ms}^{-1} \quad$ AG	A1	
		2	
1(iii)	$x=28 \cos 30 \times 3$	M1	Use horizontal motion. Allow their V for M1
	$x=72.7 \mathrm{~m}$	A1	
		2	

Question	Answer	Marks	Guidance
2	Original square: $\mathrm{Area}=0.7^{2}, \mathrm{CoM}=\sqrt{\left(0.35^{2}+0.35^{2}\right)}$ and Smaller square: Area $=0.3^{2}, \mathrm{CoM}=\sqrt{\left(0.15^{2}+0.15^{2}\right)}$	B1	$\begin{aligned} & 0.49,0.495 \text { from } \mathrm{A} \\ & 0.09,0.21213 \ldots \text { from } D \text { or } E \end{aligned}$
	$A X(0.49-0.09)+0.09(\sqrt{0.98}-\sqrt{0.045})=0.49 \times 0.495$	M1A1	Attempt to take moments about A
	$A X=0.431 \mathrm{~m}$	A1	
		4	
	Alternative method for question 2		
	$(0.49 \times 0.35)=(0.09 \times 0.55)+0.4 X \rightarrow X=0.305$	M1	Take moments about AG or AB
	$X=Y=0.305$	B1	

Question	Answer	Marks	Guidance
2	$A X=\sqrt{\left(0.305^{2}+0.305^{2}\right)}$	M1	Use Pythagoras's theorem
	$A X=0.431$	A1	
		4	

Question	Answer	Marks	Guidance
$3(\mathrm{i})$	$r=0.4 \mathrm{~m}$	$\mathbf{B 1}$	Use Pythagoras's theorem
	$T \cos \theta=0.4 \times 5^{2} \times 0.4$	$\mathbf{M 1}$	Use Newton's Second Law
	$T \times \frac{0.4}{0.5}=4, T=5 N$	A1	
		$\mathbf{3}$	$\mathbf{3}$
	$R=0.4 g-T \sin \theta$	Resolve vertically. Allow for their T for M1	
	$R=1 N$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$0.5 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=0.5 g-\frac{16 x}{0.8}-25 x^{2}$	M1	Use Newton's Second Law vertically
	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=10-40 x-50 x^{2}$	$\mathbf{A G}$	$\mathbf{A 1}$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(ii)	$\int v \mathrm{~d} v=\int\left(10-40 x-50 x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate
	$\frac{v^{2}}{2}=10 x-20 x^{2}-\frac{50 x^{3}}{3}(+c)$	A1	
	$0=10-40 x-50 x^{2}$	M1	Put the acceleration equal to zero
	$x=0.2$ (Ignore $x=-1$ if seen)	A1	
	$\frac{0.5 v^{2}}{2}=\frac{8}{15}=0.533 \mathrm{~J}$	B1	Use $K E=\frac{m v^{2}}{2}$
	$16 \times \frac{0.2^{2}}{(2 \times 0.8)}=0.4 \mathrm{~J}$	B1	Use $E E=\frac{\lambda x^{2}}{(2 l)}$
		6	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$4=\frac{\lambda(1.6-a)}{a}$	B1	Use $T=\left(\frac{\lambda x}{l}\right)$ twice
	$6=\frac{\lambda(2-a)}{a}$	B1	
	$1.5=\frac{(2-a)}{(1.6-a)}$	M1	Attempt to solve the simultaneous equations

Question	Answer	Marks	Guidance
5(i)	$0.4=0.5(a), a=0.8$	A1	
	$\lambda=4$	A1	
		5	
5(ii)	$T=4 \times \frac{1.1}{0.8}(=5.5)$	B1	FT Use $T=\frac{\lambda x}{L}, \mathrm{ft}$ candidates λ and a
	$5.5=\frac{0.2 v^{2}}{1.9}$	M1	Use Newton's Second Law horizontally
	$v=7.23 \mathrm{~ms}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	$15 \cos \theta=v_{H}$ and $15 \sin \theta-4 g=v_{V}$	$\mathbf{B 1}$	Use horizontal and vertical motion
	$(15 \cos \theta)^{2}+(15 \sin \theta-4 g)^{2}=30^{2}$	$\mathbf{M 1}$	Use Pythagoras's theorem
	$[225-1200 \sin \theta+1600=900]$	$\mathbf{M 1}$	Attempt to solve for θ
	$\theta=50.4^{\circ}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
6(i)	Alternative Method		
	$h=(15 \sin \theta) \times 4-\frac{g(4)^{2}}{2}$	B1	
	$\frac{m(15)^{2}}{2}=\frac{m(30)^{2}}{2}+m g h$	M1	Allow h not replaced
		M1	Attempt to eliminate h and attempt to solve for θ
	$\theta=50.4^{\circ}$	A1	
		4	
6(ii)	$s=15 \sin 50.4 \times 4-\frac{1}{2} \times g \times 4^{2}$	M1	Use vertical motion. Allow their θ for first M1
	$s=33.75 \mathrm{~m}$ (AG	A1	
	$\cos \alpha=\frac{15 \cos 50.4}{30}$	M1	Use trigonometry of a right angled triangle
	$\alpha=71.4^{\circ}$ below the horizontal	A1	
		4	If $\mathrm{g}=9.8$ or 9.81 used then M1A0M1A0

Question	Answer	Marks	Guidance
7(i)	$X=\frac{2 r}{\pi}$	B1	$X=$ distance of centre of mass of the arc from $A B C$
	$0.8 \times 0.1=\pi r \times \frac{2 r}{\pi}$	M1	Take moments about $A B C$
	$r=0.2$	A1	
		3	
7(ii)	$A C=0.8+2 \times 0.2-0.2 \pi(=0.57168 \ldots)$	B1	
	$0.1 W=7 A C$	M1	$A C$ must be a numerical value. Take moments about A
	$W=40(0)$.	A1	
		3	
7(iii)	$(0.8-0.2 \pi+0.2)[=0.37168 \ldots]$	B1	
	$0.8 Y=(0.8-0.2 \pi) \times \frac{(0.8-0.2 \pi)}{2}+(0.2 \pi) \times(0.8-0.2 \pi+0.2)$	M1A1	
	$Y=0.310$ (338)	A1	
	$\tan \theta=\frac{0.1}{0.310338}$	M1	
	$\theta=17.9$	A1	Allow 17.8

