9709_s19_ms_52

Question	Answer	Marks	Guidance
1(i)	$k = \frac{g}{2} = 5$	B1	Use the trajectory equation from the formula sheet
		1	
1(ii)	$V\sin 30 = 14$	M1	Use the trajectory equation from the formula sheet
	$V = 28 \text{ ms}^{-1}$ AG	A1	
		2	
1(iii)	$x = 28\cos 30 \times 3$	M1	Use horizontal motion. Allow <i>their</i> V for M1
	x = 72.7 m	A1	
		2	

Question	Answer	Marks	Guidance
2	Original square: Area = 0.7^2 , CoM = $\sqrt{(0.35^2 + 0.35^2)}$ and Smaller square: Area = 0.3^2 , CoM = $\sqrt{(0.15^2 + 0.15^2)}$	B1	0.49, 0.495 from A 0.09, 0.21213 from D or E
	$AX(0.49 - 0.09) + 0.09(\sqrt{0.98} - \sqrt{0.045}) = 0.49 \times 0.495$	M1A1	Attempt to take moments about A
	AX = 0.431 m	A1	
		4	
	Alternative	method fo	r question 2
	$(0.49 \times 0.35) = (0.09 \times 0.55) + 0.4X \rightarrow X = 0.305$	M1	Take moments about AG or AB
	X = Y = 0.305	B1	

Question	Answer	Marks	Guidance
2	$AX = \sqrt{\left(0.305^2 + 0.305^2\right)}$	M1	Use Pythagoras's theorem
	AX = 0.431	A1	
		4	

Question	Answer	Marks	Guidance
3(i)	r = 0.4 m	B1	Use Pythagoras's theorem
	$T\cos\theta = 0.4 \times 5^2 \times 0.4$	M1	Use Newton's Second Law
	$T \times \frac{0.4}{0.5} = 4, T = 5N$	A1	
		3	
3(ii)	$R = 0.4g - T\sin\theta$	M1	Resolve vertically. Allow for their <i>T</i> for M1
	R = 1N	A1	
		2	

Question	Answer	Marks	Guidance
4(i)	$0.5v\frac{dv}{dx} = 0.5g - \frac{16x}{0.8} - 25x^2$	M1	Use Newton's Second Law vertically
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = 10 - 40x - 50x^2$ AG	A1	
		2	

May/June 2019

<u>9709_s19_ms_</u>52

Question	Answer	Marks	Guidance
4(ii)	$\int v \mathrm{d}v = \int \left(10 - 40x - 50x^2\right) \mathrm{d}x$	M1	Attempt to integrate
	$\frac{v^2}{2} = 10x - 20x^2 - \frac{50x^3}{3}(+c)$	A1	
	$0 = 10 - 40x - 50x^2$	M1	Put the acceleration equal to zero
	x = 0.2 (Ignore $x = -1$ if seen)	A1	
	$\frac{0.5v^2}{2} = \frac{8}{15} = 0.533 \mathrm{J}$	B1	Use $KE = \frac{mv^2}{2}$
	$16 \times \frac{0.2^2}{(2 \times 0.8)} = 0.4 \text{ J}$	B1	Use $EE = \frac{\lambda x^2}{(2l)}$
		6	

Question	Answer	Marks	Guidance
5(i)	$4 = \frac{\lambda (1.6 - a)}{a}$	B1	Use $T = \left(\frac{\lambda x}{l}\right)$ twice
	$6 = \frac{\lambda(2-a)}{a}$	B1	
	$1.5 = \frac{(2-a)}{(1.6-a)}$	M1	Attempt to solve the simultaneous equations

9709/52

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	0.4 = 0.5(a), a = 0.8	A1	
	$\lambda = 4$	A1	
		5	
5(ii)	$T = 4 \times \frac{1.1}{0.8} (= 5.5)$	B1	FT Use $T = \frac{\lambda x}{L}$, ft candidates λ and a
	$5.5 = \frac{0.2v^2}{1.9}$	M1	Use Newton's Second Law horizontally
	$v = 7.23 \text{ ms}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	$15\cos\theta = v_H$ and $15\sin\theta - 4g = v_V$	B1	Use horizontal and vertical motion
	$(15\cos\theta)^2 + (15\sin\theta - 4g)^2 = 30^2$	M1	Use Pythagoras's theorem
	$[225 - 1200\sin\theta + 1600 = 900]$	M1	Attempt to solve for θ
	$\theta = 50.4^{\circ}$	A1	
		4	

Question	Answer	Marks	Guidance
6(i)	Alternative Method		
	$h = (15\sin\theta) \times 4 - \frac{g(4)^2}{2}$	B1	
	$\frac{m(15)^2}{2} = \frac{m(30)^2}{2} + mgh$	M1	Allow <i>h</i> not replaced
		M1	Attempt to eliminate h and attempt to solve for θ
	$\theta = 50.4^{\circ}$	A1	
		4	
6(ii)	$s = 15\sin 50.4 \times 4 - \frac{1}{2} \times g \times 4^2$	M1	Use vertical motion. Allow <i>their</i> θ for first M1
	<i>s</i> = 33.75 m AG	A1	
	$\cos\alpha = \frac{15\cos 50.4}{30}$	M1	Use trigonometry of a right angled triangle
	$\alpha = 71.4^{\circ}$ below the horizontal	A1	
		4	If $g = 9.8 \text{ or } 9.81$ used then M1A0M1A0

9709/52

Cambridge International A Level – Mark Scheme **PUBLISHED**

<u>9709_s19_ms_</u>52

Question	Answer	Marks	Guidance
7(i)	$X = \frac{2r}{\pi}$	B1	X = distance of centre of mass of the arc from <i>ABC</i>
	$0.8 \times 0.1 = \pi r \times \frac{2r}{\pi}$	M1	Take moments about ABC
	<i>r</i> =0.2	A1	
		3	
7(ii)	$AC = 0.8 + 2 \times 0.2 - 0.2\pi \ (= 0.57168)$	B1	
	0.1W = 7AC	M1	AC must be a numerical value. Take moments about A
	W = 40(0.) N	A1	
		3	
7(iii)	$(0.8 - 0.2\pi + 0.2) = 0.37168$	B1	
	$0.8Y = (0.8 - 0.2\pi) \times \frac{(0.8 - 0.2\pi)}{2} + (0.2\pi) \times (0.8 - 0.2\pi + 0.2)$	M1A1	
	Y = 0.310(338)	A1	
	$\tan\theta = \frac{0.1}{0.310338}$	M1	
	θ =17.9	A1	Allow 17.8