Question	Answer		Marks	Guidance
1(i)	$T \cos \theta\left(=T \times \frac{0.15}{0.8}\right)=0.3 g$		M1	Resolve vertically. θ is the angle between the string and the vertical
	$T=16 N$ AG		A1	
			2	
1(ii)	$r^{2}=0.8^{2}-0.15^{2}$		B1	$r=0.78581 \ldots$
	$16 \sin \theta\left(=16 \times \frac{0.78581 \ldots}{0.8}\right)=\frac{0.3 v^{2}}{0.78581 \ldots}$		M1	Use Newton's Second Law horizontally
	$v=6.416$		A1	
			3	

Question	Answer	Marks	Guidance
2	$V \cos \theta=16 \cos 30(=8 \sqrt{3}=13.856 \ldots)$	B1	Use horizontal motion
	$V \sin \theta=16 \sin 30+4 g(=48)$	B1	Use vertical motion
	$\begin{aligned} & V^{2}=(16 \cos 30)^{2}+(16 \sin 30+4 g)^{2} \text { OR } \\ & \tan \theta=\frac{(16 \sin 30+4 g)}{16 \cos 30} \end{aligned}$	M1	Use Pythagoras's theorem or trigonometry of a right angled triangle
	$V=50(.0)$	A1	
	$\theta=73.9^{\circ}$	A1	
		5	

Question	Answer	Marks	Guidance
3	Volume of cylinder $=\pi \times 0.22 \times 0.7(=0.028 \pi)$ AND	B1	Both volumes required for B1
	Volume of hemisphere $=2 \pi \times \frac{0.2^{3}}{3}(=0.0053333 \pi)$	B1	
	Distance of centre of mass from object base $=0.7-3 \times \frac{0.2}{8}(=0.625)$	M1A1	Take moments about the plane face
	$x\left(\pi \times 0.2^{2} \times 0.7-2 \pi \times \frac{0.2^{3}}{3}\right)+\left(0.7-3 \times \frac{0.2}{8}\right) \times 2 \pi \times \frac{0.2^{3}}{3}=0.35 \times 0.028 \pi$	$\mathbf{A 1}$	
	$x=0.285 \mathrm{~m}$	$\mathbf{5}$	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$x=25 \cos 30 t$	B1	Use horizontal motion
	$y=25 \sin 30 t-\frac{g t^{2}}{2}$	B1	Use vertical motion
	$y=25 \sin 30\left(\frac{x}{25 \cos 30}\right)-\frac{g\left(\frac{x}{25 \cos 30}\right)^{2}}{2}$	M1	Eliminate t
	$y=\frac{x}{\sqrt{3}}-\frac{4 x^{2}}{375}$ or $y=0.577 x-0.0107 x^{2}$	A1	

Question	Answer	Marks	Guidance
4(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{3}}-\frac{8 x}{375} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=0.577-0.0214 x$	M1A1	Differentiate the equation from part (i) to find the gradient
	$-\tan 15=\frac{1}{\sqrt{3}}-\frac{8 x}{375} \text { or }-\tan 15=0.577-0.0214 x$	M1	Attempt to solve
	$x=39.6$ or $x=39.5$	A1	
		4	
	Alternative method for question 4(ii)		
	$\tan 15=\frac{v_{y}}{v_{x}}=\frac{v_{y}}{12.5 \sqrt{3}}$	M1	
	$v_{y}=12.5 \sqrt{3 \tan 15}(=5.8)$ downwards	A1	
	$-5.8=12.5-10 t$ leading to $t=1.83$	M1	Vertical motion using $v=u+a t$
	$X=1.83 \times \frac{25 \sqrt{3}}{2}=39.6$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	$0.4 g(0.5+x)=\frac{6 x^{2}}{(2 \times 0.5)}$	M1	Set up an energy equation
	$6 x^{2}-4 x-2=0$ or $3 x^{2}-2 x-1=0$	M1	Attempt to solve a 3 term quadratic equation
	$x=1$ (ignore $-\frac{1}{3}$ if seen)	A1	
		3	
5(ii)	$0.4 g=\frac{6 e}{0.5}$	M1	Use $T=\frac{\lambda x}{l}$ to find the extension at the equilibrium position
	$e=\frac{1}{3}$	A1	
	$P E \text { change }=0.4 g\left(0.5+\frac{1}{3}\right)$	B1ft	Ft for candidate's e
	$\frac{0.4 V^{2}}{2}=0.4 g\left(0.5+\frac{1}{3}\right)-\frac{6\left(\frac{1}{3}\right)^{2}}{(2 \times 0.5)}$	M1	Set up a three term energy equation
	$V=3.65 \mathrm{~ms}^{-1}$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	From $A B=0.2$	B1	
	From $B C=0.1$	B1	
		2	
6(ii)	$\tan \theta=\frac{0.1}{0.2}$	M1	θ is the angle between $A B$ and the horizontal
	$\theta=26.6^{\circ}$	A1	
		2	
6(iii)	$12 \cos 26.6 \times 0.3=W \times 0.2$	M1A1	Take moments about B. (W is the weight of the lamina)
	$W=16.1 \mathrm{~N}$	A1	
		3	

Question	Answer	Marks	
$7(\mathrm{i})$	$0.5 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-0.5 g-0.1 x^{2}$	M1	Use Newton's Second Law vertically
	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-10-0.2 x^{2}$	$\mathbf{A G}$	
		$\mathbf{A} 1$	

Question	Answer	Marks	Guidance
7(ii)	$\int v \mathrm{~d} v=\int\left(-10-0.2 x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate the expression in part (i)
	$\frac{v^{2}}{2}-10 \times \frac{-0.2 x^{3}}{3}+c$	A1	
	$\left[\frac{v 2}{2}=-10-\frac{0.2}{3}+18\right]$	M1	Either use limits or find c and put $x=1$
	$v=3.98(329 \ldots) \mathrm{ms}^{-1}$		
7(iii)	$0.5 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-0.5 g-0.1 x^{2}-\frac{16(x-1)}{1}$	M1	Use Newton's Second Law vertically when string becomes taut
	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-10-0.2 x^{2}-32 x+32=22-32 x-0.2 x^{2}$	A1	
		2	
7(iv)	$\int v \mathrm{~d} v=\int\left(22-32 x-0.2 x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate after the string becomes taut
	$\frac{v^{2}}{2}=22 x-\frac{32 x^{2}}{2}-\frac{0.2 x^{3}}{3}+k$	A1	
	$\begin{aligned} & x=1, v=3.98(329 \ldots) \text { hence } k=2 . \text { Now put } x=1.5 \\ & 22 \times 1.5-32 \times \frac{1.5^{2}}{2}-0.2 \times \frac{1.5^{3}}{3}+2=-1.225 \end{aligned}$	M1	Either use limits or find k and put $x=1.5$
	As $\frac{v^{2}}{2}$ cannot be negative, P comes to rest before the extension of the string is 0.5 .	A1	
		4	

