Question	Answer	Marks	Guidance
1(i)	$T\cos\theta\bigg(=T\times\frac{0.15}{0.8}\bigg)=0.3g$	M1	Resolve vertically. θ is the angle between the string and the vertical
	T = 16 N AG	A1	
		2	
1(ii)	$r^2 = 0.8^2 - 0.15^2$	B1	r = 0.78581
	$16\sin\theta \left(=16 \times \frac{0.78581}{0.8}\right) = \frac{0.3v^2}{0.78581}$	M1	Use Newton's Second Law horizontally
	v = 6.416	A1	
		3	

Question	Answer	Marks	Guidance
2	$V\cos\theta = 16\cos 30 \left(= 8\sqrt{3} = 13.856 \right)$	B1	Use horizontal motion
	$V\sin\theta = 16\sin 30 + 4g(=48)$	B1	Use vertical motion
	$V^{2} = (16\cos 30)^{2} + (16\sin 30 + 4g)^{2} \text{ OR}$ $\tan \theta = \frac{(16\sin 30 + 4g)}{16\cos 30}$	M1	Use Pythagoras's theorem or trigonometry of a right angled triangle
	V = 50(.0)	A1	
	$\theta = 73.9^{\circ}$	A1	
		5	

Question	Answer	Marks	Guidance
3	Volume of cylinder = $\pi \times 0.22 \times 0.7$ (= 0.028π) AND Volume of hemisphere = $2\pi \times \frac{0.2^3}{3}$ (= 0.00533333π)	B1	Both volumes required for B1
	Distance of centre of mass from object base = $0.7 - 3 \times \frac{0.2}{8} (= 0.625)$	B1	
	$x\left(\pi \times 0.2^{2} \times 0.7 - 2\pi \times \frac{0.2^{3}}{3}\right) + \left(0.7 - 3 \times \frac{0.2}{8}\right) \times 2\pi \times \frac{0.2^{3}}{3} = 0.35 \times 0.028\pi$	M1A1	Take moments about the plane face
	x = 0.285 m	A1	
		5	

Question	Answer	Marks	Guidance
4(i)	$x = 25\cos 30t$	B1	Use horizontal motion
	$y = 25\sin 30t - \frac{gt^2}{2}$	B1	Use vertical motion
	$y = 25\sin 30\left(\frac{x}{25\cos 30}\right) - \frac{g\left(\frac{x}{25\cos 30}\right)^2}{2}$	M1	Eliminate t
	$y = \frac{x}{\sqrt{3}} - \frac{4x^2}{375}$ or $y = 0.577x - 0.0107x^2$	A1	
		4	

Question	Answer	Marks	Guidance
4(ii)	$\frac{dy}{dx} = \frac{1}{\sqrt{3}} - \frac{8x}{375}$ or $\frac{dy}{dx} = 0.577 - 0.0214x$	M1A1	Differentiate the equation from part (i) to find the gradient
	$-\tan 15 = \frac{1}{\sqrt{3}} - \frac{8x}{375} \text{ or } -\tan 15 = 0.577 - 0.0214x$	M1	Attempt to solve
	x = 39.6 or $x = 39.5$	A1	
		4	
	Alternative method for question 4(ii)		
	$\tan 15 = \frac{v_y}{v_x} = \frac{v_y}{12.5\sqrt{3}}$	M1	
	$v_y = 12.5\sqrt{3 \tan 15} (= 5.8)$ downwards	A1	
	-5.8 = 12.5 - 10t leading to $t = 1.83$	M1	Vertical motion using $v = u + at$
	$X = 1.83 \times \frac{25\sqrt{3}}{2} = 39.6$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	$0.4g(0.5+x) = \frac{6x^2}{(2\times0.5)}$	M1	Set up an energy equation
	$6x^2 - 4x - 2 = 0 \text{ or } 3x^2 - 2x - 1 = 0$	M1	Attempt to solve a 3 term quadratic equation
	$x = 1$ (ignore $-\frac{1}{3}$ if seen)	A1	
		3	
5(ii)	$0.4g = \frac{6e}{0.5}$	M1	Use $T = \frac{\lambda x}{l}$ to find the extension at the equilibrium
			position
	$e = \frac{1}{3}$	A1	
	$PE \text{ change} = 0.4g \left(0.5 + \frac{1}{3}\right)$	B1ft	Ft for candidate's e
	$\frac{0.4V^2}{2} = 0.4g\left(0.5 + \frac{1}{3}\right) - \frac{6\left(\frac{1}{3}\right)^2}{(2 \times 0.5)}$	M1	Set up a three term energy equation
	$V = 3.65 \text{ ms}^{-1}$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	From $AB = 0.2$	B1	
	From $BC = 0.1$	B1	
		2	
6(ii)	$\tan \theta = \frac{0.1}{0.2}$	M1	θ is the angle between AB and the horizontal
	θ = 26.6°	A1	
		2	
6(iii)	$12\cos 26.6 \times 0.3 = W \times 0.2$	M1A1	Take moments about B . (W is the weight of the lamina)
	W = 16.1 N	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$0.5v \frac{dv}{dx} = -0.5g - 0.1x^2$	M1	Use Newton's Second Law vertically
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = -10 - 0.2x^2$	A1	
		2	

			9709_819_08_
Question	Answer	Marks	Guidance
7(ii)	$\int v dv = \int \left(-10 - 0.2x^2\right) dx$	M1	Attempt to integrate the expression in part (i)
	$\frac{v^2}{2} - 10 \times \frac{-0.2x^3}{3} + c$	A1	
	$\left[\frac{v^2}{2} = -10 - \frac{0.2}{3} + 18\right]$	M1	Either use limits or find c and put $x = 1$
	$v = 3.98 (329) \text{ ms}^{-1}$		
7(iii)	$0.5v\frac{dv}{dx} = -0.5g - 0.1x^2 - \frac{16(x-1)}{1}$	M1	Use Newton's Second Law vertically when string becomes taut
	$v\frac{\mathrm{d}v}{\mathrm{d}x} = -10 - 0.2x^2 - 32x + 32 = 22 - 32x - 0.2x^2$	A1	
		2	
7(iv)	$\int v dv = \int \left(22 - 32x - 0.2x^2\right) dx$	M1	Attempt to integrate after the string becomes taut
	$\frac{v^2}{2} = 22x - \frac{32x^2}{2} - \frac{0.2x^3}{3} + k$	A1	
	x = 1, v = 3.98 (329) hence $k = 2$. Now put $x = 1.522 \times 1.5 - 32 \times \frac{1.5^2}{2} - 0.2 \times \frac{1.5^3}{3} + 2 = -1.225$	M1	Either use limits or find k and put $x = 1.5$
	As $\frac{v^2}{2}$ cannot be negative, P comes to rest before the extension of the	A1	
	string is 0.5.		
		4	