May/June 2019

9709_s19_ms_43

Question	Answer	Marks	Guidance
1	Trapezium	B1	Includes (0,0) and (,0)
	(t = 0), t = 5, t = 29, t = 35	B1	Correct trapezium with key time values
	$v_{max} = 2.1 \times 5 = 10.5 \text{ ms}^{-1}$	B1	
	$[\frac{1}{2} \times (24 + 35) \times 10.5]$ or $[\frac{1}{2} \times 5 \times 10.5 + 24 \times 10.5 + \frac{1}{2} \times 6 \times 10.5]$	M1	Use of area property to find distance
	309.75 m or 310 m	A1	
		5	

Question	Answer	Marks	Guidance
2(i)	[24cos25° – 12cos65°]	M1	Resolving in <i>x</i> -direction
	16.7 N	A1	(16.679)
	[30 - 24sin25° - 12sin65°]	M1	Resolving in <i>y</i> -direction
	8.98 N	A1	(8.981)
		4	
2(ii)	$[\tan^{-1} \frac{8.98}{16.67}]$	M1	Uses trigonometry to find the angle
	28.3° (anticlockwise) from <i>x</i> -direction	A1	(28.300) or equivalent
		6	

May/June 2019

9709_s19_ms_43

Question	Answer	Marks	Guidance
3(i)		M1	Use of Newton's Second Law (4 terms)
	$DF - 1550 - 1400gsin4^\circ = 1400 \times 0.4$	A1	(<i>DF</i> = 3086.59)
	$[30000 = (1400 \times 0.4 + 1550 + 1400gsin4^{\circ})v]$	M1	Use of $P = Fv$
	$v = 9.72 \text{ ms}^{-1}$	A1	
		4	
3(ii)	$[DF - 1550 - 1400g\sin^{\circ} = 0]$	M1	(DF = 2526.59) Resolving up the hill
	$[P_{\max} = (1550 + 1400g\sin^{\circ}) \times 40]$	M1	Use of $P = Fv$
	P = 101000 W or $101 kW$	A1	(<i>P</i> = 101063.6)
		3	

9709/43

May/June 2019

9709_s19_ms_43

Question	Answer	Marks	Guidance
4(i)	Particle A: $[1.3g - T = 1.3a]$ or Particle B: $[T - 0.7g = 0.7a]$	M1	Use of Newton's Second law for <i>A</i> or <i>B</i> or use of $a = (m_A - m_B)g/(m_A + m_B)$
	1.3g - T = 1.3a and T - 0.7g = 0.7a OR $a = \frac{(1.3 - 0.7)g}{(1.3 + 0.7)}$ and $1.3g - T = 1.3a$ or $T - 0.7g = 0.7a$	A1	Two correct equations
	$[6=2a, a=3]$ or $[\frac{1.3g-T}{1.3} = \frac{T-0.7g}{0.7}, T=9.1]$	M1	Solves for <i>a</i> or for <i>T</i>
	$a = 3 \text{ ms}^{-2}$ and $T = 9.1 \text{ N}$	A1	(<i>a</i> = 3)
		4	
4(ii)	Distance while connected = 0.375 m	B1	
	$[v^2 = 0^2 + 2 \times 3 \times 0.375 \rightarrow v = \dots]$	M1	Use of <i>suvat</i> to find v at 'break' $(v^2 = 2as)$
	$v = 1.5 \text{ ms}^{-1}$	A1	Correct value or expression for <i>v</i>
	$[A: 1.375 = 1.5t + \frac{1}{2}gt^2 \rightarrow t = 0.395]$	M1	Finds one time 'from break to floor'
	[B: $1.375 = -1.5t + \frac{1}{2}gt^2$ or $-1.375 = 1.5t - \frac{1}{2}gt^2 \rightarrow t = 0.695$]	M1	Finds second time 'from break to floor'
	Difference in times = 0.3 s	A1	
	Alternative Method 1 for 4(ii) (last 3 marks)	•	
	$[u_B = 1.5, v_B = 0, a = -g, 0 = 1.5 - gt \rightarrow t = 0.15]$	M1	Finds t_B from 'break' to maximum height
	Difference in times = 2×0.15	M1	
	Difference in times = 0.3 s	A1	

9709/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 43

Question	Answer	Marks	Guidance
4(ii)	Alternative Method 2 for 4(ii) (last 3 marks)		
	$\begin{bmatrix} A: \ 0.375 = \frac{1}{2} \times 3t^2 \rightarrow t = 0.5 \\ 0.395 \qquad t_A \text{ total} = 0.5 + 0.395 = 0.895 \text{ s} \end{bmatrix} \xrightarrow{t=0.5} t = 0.5 + 0.395 = 0.895 \text{ s}$	M1	Use of <i>suvat</i> to find total time for A
	$\begin{bmatrix} B: & 0.375 = \frac{1}{2} \times 3t^2 \rightarrow t = 0.5; & 0 = 1.5 - gt \rightarrow t = 0.15, \\ s = 1.5t - \frac{1}{2}gt^2 = 0.1125 & 1.4875 = \frac{1}{2} \times gt^2 \rightarrow t = 0.545 \\ t_{\rm B} \text{ total} = 1.195 \text{ s} \end{bmatrix}$	M1	Use of <i>suvat</i> to find total time for <i>B</i>
	Difference in times = 0.3 s	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	(PE gain =) $18gd\sin 30^{\circ}$ or (KE loss =) $\frac{1}{2} \times 18 \times 20^{2}$	B1	
	(PE gain =) $18gd\sin 30^{\circ}$ and (KE loss =) $\frac{1}{2} \times 18 \times 20^{2}$	B1	
	$[18gd\sin 30^\circ = \frac{1}{2} \times 18 \times 20^2]$ or $[18gh = \frac{1}{2} \times 18 \times 20^2]$	M1	Energy equation (PE gain = KE loss)
	Distance up plane = 40 m	A1	
		4	
5(ii)	$R = 18g\cos 30^{\circ}$ (90 $\sqrt{3}$ or 155.884)	B1	
	$[F = 0.25(18g\cos 30^\circ)]$ (45 $\sqrt{3}/2$ or 38.971)	M1	Use of $F = \mu R$
	$[18gsin30^\circ + 0.25(18gcos30^\circ) = -18a \rightarrow a =]$ $(a = -7.165)$	M1	Newton's Second Law (3 term equation)
	$[0^2 = 20^2 + 2 \times -7.165 \times s \longrightarrow s =]$	M1	Use of <i>suvat</i> to find <i>s</i>
	<i>s</i> = 27.913	A1	

May/June 2019

9709 s19 ms 43

Question	Answer	Marks	Guidance
5(ii)	$[18gsin30^{\circ} - 0.25(18gcos30^{\circ}) = 18a \rightarrow a =]$	M1	(a = 2.835) - Newton's Second Law (3 term equation)
	$[v^2 = 0^2 + 2 \times 2.835 \times 27.913 \rightarrow v =]$	M1	Use of <i>suvat</i> to find <i>s</i>
	$v = 12.6 \text{ ms}^{-1}$	A1	(12.580)
	Alternative Method 1 for 5(ii)		
	$R = 18g\cos 30^{\circ}$ (90 $\sqrt{3}$ or 155.884)	B1	
	$[F = 0.25(18g\cos 30^\circ)]$ (45 $\sqrt{3}/2$ or 38.971)	M1	Use of $F = \mu R$
	[KE gain = $\frac{1}{2} \times 18 \times 20^2$ and PE loss = 18gh or 18gs(sin30°)]	M1	Use of KE = $1/2 mv^2$ and PE = mgh
	$[\frac{1}{2} \times 18 \times 20^2 = 18gs(\sin 30^\circ) + 45\cos 30^\circ \times s]$	M1	Work / Energy equation (up plane)
	<i>s</i> = 27.913	A1	
	$[WD = 45\cos 30^{\circ} \times 27.91]$	M1	Work done against friction
	$[\frac{1}{2} \times 18v^2 = (18g\sin 30^\circ) \times 27.91 45\cos 30^\circ \times 27.91]$	M1	Work / Energy equation (down plane)
	$v = 12.6 \text{ ms}^{-1}$	A1	(12.580)
	Alternative Method 2 for 5(ii) (last 3 marks)		
	$[WD = 2 \times 45\cos 30^{\circ} \times 27.91]$	M1	WD against friction (up and down)
	$[\frac{1}{2} \times 18 \times 20^2 - \frac{1}{2} \times 18v^2 = 2 \times 45\cos 30^\circ \times 27.91]$	M1	Uses KE loss = total WD against friction
	$v = 12.6 \text{ ms}^{-1}$	A1	(12.580)
		8	

9709/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 43

Question	Answer	Marks	Guidance
6(i)	$[v = 6t^2/2 - 12t + C] \qquad v = 3t^2 - 12t + C$	*M1	Use of $v = \int a dt$
	$[s = 3t^{3}/3 - 12t^{2}/2 + Ct + D] \qquad s = t^{3} - 6t^{2} + Ct + D$	*M1	Use of $s = \int v dt$
	$\begin{bmatrix} 5 = 1 - 6 + C + D & C + D = 10 \\ 1 = 27 - 54 + 3C + D & 3C + D = 28 & \rightarrow C = \dots, D = \dots \end{bmatrix}$	DM1	Substitutes for <i>s</i> and <i>t</i> and solves equations. Dependent on both Ms.
	$s = t^3 - 6t^2 + 9t + 1$ or $p = 9, q = 1$	A1	
		4	
6(ii)	$[v = 0, 3t^{2} - 12t + 9 = 0(t - 1)(t - 3) = 0 \rightarrow t = \dots]$	M1	Solves $v = 0$ to find <i>t</i> values
	t = 1 or $t = 3$	A1	
		2	
6(iii)	$\left[\int_{0}^{1} v dt + \int_{1}^{3} v dt + \int_{3}^{4} v dt\right]$	M1	Attempts to use at least three <i>t</i> intervals
	[For $0 \le t \le 1$, $s = (1 - 6 + 9 + 1) - 1 = 4$]	M1	Evaluates <i>s</i> for one time interval
	$\begin{bmatrix} 0 \le t \le 1, s = (1 - 6 + 9 + 1) - 1 = 4; 1 \le t \le 3, s = (27 - 54 + 27 + 1) - 5 = 4 \\ 3 \le t \le 4, s = (64 - 96 + 36 + 1) - 1 = 4 \end{bmatrix}$	A1	Correctly finds all at least two distances (ignoring signs)
	Total distance is 12 m	A1	
		4	