Question	Answer	Mark	Guidance
1	$\begin{aligned} & (X=) 78 \square 5 / 13-50 \times 3 / 5=78 \cos 67.4-50 \cos 53.1 \\ & (Y=) 78 \square 12 / 13 \square 50 \times 4 / 5-112 \\ & \quad=78 \sin 67.4 \square 50 \sin 53.1-112 \end{aligned}$	M1	Attempt to resolve forces either horizontally (2 terms) or vertically (3 terms)
	$[X=30-30=0 Y=72+40-112=0]$	A1	Correct expressions horizontally and vertically
	$X=0$ and $Y=0$	A1	From convincing exact calculations
	Alternative method for question 1		
	$\frac{112}{\sin 59.5} \square \frac{50}{\sin 157.4} \square \frac{78}{\sin 143.1}$	M1	Attempt to use Lami, one pair of terms
		A1	All terms correct
	$\frac{112}{56 / 65} \square \frac{50}{5 / 13} \square \frac{78}{3 / 5} \square 130$	A1	Exact values seen and used and shown to be $=130$ $\cos [180-(\theta+\alpha)]=33 / 65$ and $\sin [180-(\theta+\alpha)]=56 / 65$
		3	

Question	Answer	Mark	Guidance
$2(\mathrm{i})$	$[0=25-10 t]$	$\mathbf{M 1}$	Use of $v=u \square$ at with $u=25, v=0$ and $a=-g$ or other complete method for finding t to highest point
	$t=2.5$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Mark	Guidance
2(ii)	$\left[20=25 t-1 / 2 g t^{2}\right]$	M1	Applying $s=u t+1 / 2 a t^{2}$ with $s=20, u=25$
	[$t=1$ and $t=4$]	M1	Solve a 3-term quadratic for t, factorising or formula
	Required time $=4-1=3$ seconds	A1	
	Alternative method for question 2(ii)		
	$\left[v^{2}=25^{2} \square 2 \square(-10) \square 20 \quad \rightarrow \quad v=\square 15\right]$	M1	Using $v^{2}=u^{2}+2 a s$ with $u=25, s=20$ and $a=-g$
	$[-15=15-10 T]$ or equivalent	M1	Use v at $s=20$ to find the time, T, taken to reach the maximum height and to return to $s=20$
	Required time $=1.5 \square 1.5=3$ seconds	A1	
		3	
2(iii)	Max height reached at 2.5 s , hence reaches h after 2 s $h-3=25 \square 2-5 \square 2^{2}$	M1	Using their t from 2(i) -0.5 in $s=u t+1 / 2 a t^{2}$ Allow finding h without taking note of the additional 3 m
	$h=33 \mathrm{~m}$	A1	
	Alternative method for question 2(iii)		
	Maximum height $=1 / 2 \square(25+0) \square 2.5[=31.25]$ o.e. In 0.5 s it falls distance $1 / 2 \square 10 \times 0.5^{2}[=1.25]$	M1	For attempting to find both the maximum height and the distance fallen in 0.5 seconds
	$h=31.25-1.25 \square 3=33 \mathrm{~m}$	A1	
		2	

Question	Answer	Mark	Guidance
3(i)	$\mathrm{DF}=1500 \square 12000 \square \mathrm{~g} \square 0.08$ [DF $=11100]$	M1	Using DF $=$ Resistance \square weight component (3 terms)
	Power $=$ DF $\square 5$	M1	Using $P=F v$ (their 2 term DF \square 5)
	Power $=11100 \square 5=55.5 \mathrm{~kW}$	A1	AG
		3	
3(ii)	$k \square 5^{2}=1500, k=60$	B1	AG
		1	
3(iii)	$\mathrm{DF}=60 \nu^{2}$	B1	Using DF $=$ resistance $=60 \nu^{2}$
	$55500=\mathrm{DF} \square v=60 v^{2} \square v=60 v^{3}$	M1	$P=F v$ used and attempt to solve a 2-term cubic equation for v
	$v=9.74 \mathrm{~ms}^{-1}$	A1	
		3	

Question	Answer	Mark	Guidance
4(i)	$R=13 \cos 67.4=13(5 / 13) \quad[R=5]$	B1	Resolve forces perpendicular to plane. Allow 67.4 used
	$F \square 13 \sin 67.4=F+13(12 / 13)=20 \quad[F=8]$	B1	Resolve forces parallel to plane. Allow 67.4 used
		M1	Use $F=\mu R$
	$\mu=8 / 5=1.6$	A1	AG Must be from exact working here
		4	

Question	Answer	Mark	Guidance
4(ii)	$\begin{aligned} & 13 \sin 67.4-F=1.3 a \\ & F=\mu R=8 \quad \rightarrow \quad[4=1.3 a] \end{aligned}$	M1	For applying Newton's second law along the plane and also using $F=\mu R$ (3 terms)
	$a=3.08 \mathrm{~ms}^{-2}$	A1	Allow $a=40 / 13$
		2	
4(iii)	$s=0 \square 0.5 \square(40 / 13) \square 2^{2}[=80 / 13=6.15]$	M1	Use $s=u t \square 1 / 2 a t^{2}$ with $u=0$ and their $a \neq \pm g$ to find the distance moved in the first 2 seconds
	$\mathrm{WD}=8 \square 6.15$	M1	$\mathrm{WD}=F \square d$
	$\mathrm{WD}=49.2 \mathrm{~J}$	A1	Allow WD $=640 / 13 \mathrm{~J}$
	Alternative method for question 4(iii)		
	$s=0 \square 0.5 \square(40 / 13) \square 2^{2}[=80 / 13=6.15]$	M1	
	$\begin{aligned} & {[v=(40 / 13) \times 2]} \\ & \text { and }\left[W D=1.3 g(80 / 13)(12 / 13)-1 / 2 \square 1.3 \square(80 / 13)^{2}\right] \end{aligned}$	M1	Finding v after 2 seconds and using WD $=$ PE loss - KE gain
	$\mathrm{WD}=49.2 \mathrm{~J}$	A1	Allow WD $=640 / 13 \mathrm{~J}$
		3	

Question	Answer	Mark	Guidance
5(i)	$a=2 t-8$	M1	Differentiate to find a
	$a=0 \rightarrow t=4$	M1	Set $a=0$ and solve for t
	Minimum $v=-4 \mathrm{~ms}^{-1}$	A1	Full marks available for correct use of a $v-t$ graph or correct use of " $t=-b / 2 a$ "
	Alternative method for question 5(i)		
	$v=(t-4)^{2}-4$	M1	Attempt to complete the square for v
	[$t=4$]	M1	Choose the t value which gives minimum v
	Minimum $v=-4 \mathrm{~ms}^{-1}$	A1	
		3	
5(ii)	$v=0$ when $(t-2)(t-6)=0$	M1	Find values of t when $v=0$, factorise or formula
	$t=2$ or $t=6$	A1	
	$\left[s=1 / 3 t^{3}-4 t^{2}+12 t(+\mathrm{c})\right]$	M1	Integrate v to find s
		A1	Correct integration
	$\begin{aligned} & 0 \leq t \leq 2 \quad s_{1}=8 / 3-16+24=32 / 3 \\ & 2 \leq t \leq 6 s_{2}=(216 / 3-144 \square 72)-(8 / 3-16 \square 24)=-32 / 3 \\ & 6 \leq t \leq 8 \\ & s_{3}=\left(512 / 3-4 \square 8^{2} \square 12 \square 8\right)-(216 / 3-144 \square 72)=32 / 3 \end{aligned}$	M1	Attempt to find s_{1}, s_{2} and s_{3} Look for consideration of the need for 3 intervals Allow use of symmetry when finding s_{1}, and s_{3}
		A1	2 correct values of displacement
	Total distance $=32 \mathrm{~m}$	A1	All correct
		7	

Question	Answer	Mark	Guidance
6(i)	Particle $A: T=4 \sin \theta$ Particle $B: T=2$	M1	Resolve forces for A and for B
		M1	Eliminate T and solve for θ
	$\theta=30$	A1	
		3	
6(ii)(a)	$\begin{array}{ll} A: & T-4 \sin 20=0.4 a \\ B: & 2-T=0.2 a \\ \text { System: } & 2-4 \sin 20=(0.4 \square 0.2) a \end{array}$	M1	Apply Newton's second law to A or to B or to the system
		A1	Two correct equations
		M1	Solve for a or T
	$T=1.79$ and $a=1.05$	A1	Both correct
		4	
6(ii)(b)	$v^{2}=2 \square 1.053 \square 0.5=1.053$	M1	Attempt to find v using their $a \neq \pm g$
	$v=1.03 \mathrm{~ms}^{-1}$	A1	
		2	

Question	Answer	Mark	Guidance
6(ii)(c)	$\begin{aligned} & \text { Loss in } \mathrm{KE}=1 / 2 \square 0.4 \square 1.053=0.2106 \\ & \text { Gain in } \mathrm{PE}=0.4 \square 10 \square d \sin 20 \end{aligned}$	M1	Attempt KE loss or PE gain for particle A only after particle B hits the ground.
		A1ft	Both correct, d is distance moved up the plane after B hits ground
	$1 / 2 \square 0.4 \square 1.053=0.4 \square 10 \square d \sin 20$	M1	Apply KE loss = PE gain
		A1	FT Correct energy equation
	Total dist A moves up plane $=0.5 \square d=0.654 \mathrm{~m}$	A1	
		5	

