Question	Answer	Mark	Guidance
1	$(X =) 78 \Box 5/13 - 50 \times 3/5 = 78 \cos 67.4 - 50 \cos 53.1$ (Y =) 78 \Box 12/13 \Box 50 \times 4/5 - 112 = 78 \sin 67.4 \Box 50 \sin 53.1 - 112	M1	Attempt to resolve forces either horizontally (2 terms) or vertically (3 terms)
	$[X = 30 - 30 = 0 \ Y = 72 + 40 - 112 = 0]$	A1	Correct expressions horizontally and vertically
	X = 0 and $Y = 0$	A1	From convincing exact calculations
Alternative method for question 1		question 1	
	$\frac{112}{\sin 59.5} \square \frac{50}{\sin 157.4} \square \frac{78}{\sin 143.1}$	M1	Attempt to use Lami, one pair of terms
		A1	All terms correct
	$\frac{112}{56/65} \Box \frac{50}{5/13} \Box \frac{78}{3/5} \Box 130$	A1	Exact values seen and used and shown to be = 130 $\cos [180 - (\theta + \alpha)] = 33/65$ and $\sin [180 - (\theta + \alpha)] = 56/65$
		3	

Question	Answer	Mark	Guidance
2(i)	[0 = 25 - 10t]	M1	Use of $v = u \square at$ with $u = 25$, $v = 0$ and $a = -g$ or other complete method for finding <i>t</i> to highest point
	t = 2.5	A1	
		3	

Question	Answer	Mark	Guidance	
2(ii)	$[20 = 25t - \frac{1}{2}gt^2]$	M1	Applying $s = ut + \frac{1}{2}at^2$ with $s = 20$, $u = 25$	
	[t = 1 and t = 4]	M1	Solve a 3-term quadratic for <i>t</i> , factorising or formula	
	Required time = $4 - 1 = 3$ seconds	A1		
	Alternative	method for c	uestion 2(ii)	
	$[v^2 = 25^2 \square 2 \square (-10) \square 20 \longrightarrow v = \square 15]$	M1	Using $v^2 = u^2 + 2as$ with $u = 25$, $s = 20$ and $a = -g$	
	[-15 = 15 - 10T] or equivalent	M1	Use v at $s = 20$ to find the time, T, taken to reach the maximum height and to return to $s = 20$	
	Required time = $1.5 \square 1.5 = 3$ seconds	A1		
		3		
2(iii)	Max height reached at 2.5 s, hence reaches <i>h</i> after 2 s $h-3 = 25 \Box 2 - 5 \Box 2^2$	M1	Using their <i>t</i> from $2(i) - 0.5$ in $s = ut + \frac{1}{2}at^2$ Allow finding <i>h</i> without taking note of the additional 3 m	
	h = 33 m	A1		
	Alternative method for question 2(iii)			
	Maximum height = $\frac{1}{2} \square (25 + 0) \square 2.5 [= 31.25]$ o.e. In 0.5 s it falls distance $\frac{1}{2} \square 10 \times 0.5^2 [= 1.25]$	M1	For attempting to find both the maximum height and the distance fallen in 0.5 seconds	
	$h = 31.25 - 1.25 \square 3 = 33 \text{ m}$	A1		
		2		

Question	Answer	Mark	Guidance
3(i)	DF = 1500 \[12 000 \[g \[0.08 [DF = 11100] \]	M1	Using DF = Resistance \Box weight component (3 terms)
	Power = DF \Box 5	M1	Using $P = Fv$ (their 2 term DF \Box 5)
	Power = $11\ 100\ \square\ 5 = 55.5\ kW$	A1	AG
		3	
3(ii)	$k \square 5^2 = 1500, k = 60$	B1	AG
		1	
3(iii)	$DF = 60v^2$	B1	Using DF = resistance = $60v^2$
	$55500 = \mathrm{DF} \square v = 60v^2 \square v = 60v^3$	M1	P = Fv used and attempt to solve a 2-term cubic equation for v
	$v = 9.74 \text{ ms}^{-1}$	A1	
		3	

Question	Answer		Mark	Guidance
4(i)	$R = 13\cos 67.4 = 13\ (5/13)$	R = 5]	B1	Resolve forces perpendicular to plane. Allow 67.4 used
	$F \square 13 \sin 67.4 = F + 13(12/13) = 20 \qquad [F$	F = 8]	B1	Resolve forces parallel to plane. Allow 67.4 used
			M1	Use $F = \mu R$
	$\mu = 8/5 = 1.6$		A1	AG Must be from exact working here
			4	

9709/41

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Guidance
4(ii)	$13 \sin 67.4 - F = 1.3a$ $F = \mu R = 8 \longrightarrow [4 = 1.3a]$	M1	For applying Newton's second law along the plane and also using $F = \mu R$ (3 terms)
	$a = 3.08 \text{ ms}^{-2}$	A1	Allow $a = 40/13$
		2	
4(iii)	$s = 0 \square 0.5 \square (40/13) \square 2^2 [= 80/13 = 6.15]$	M1	Use $s = ut \square \frac{1}{2}at^2$ with $u = 0$ and their $a \neq \pm g$ to find the distance moved in the first 2 seconds
	$WD = 8 \Box 6.15$	M1	$WD = F \Box d$
	WD = 49.2 J	A1	Allow WD = 640/13 J
	Alternative	method for q	uestion 4(iii)
	$s = 0 \square 0.5 \square (40/13) \square 2^2 [= 80/13 = 6.15]$	M1	
	$[v = (40/13) \times 2]$ and [WD = 1.3g(80/13)(12/13) - $\frac{1}{2}$ \Box 1.3 \Box (80/13) ²]	M1	Finding v after 2 seconds and using WD = PE loss – KE gain
	WD = 49.2 J	A1	Allow WD = 640/13 J
		3	

Question	Answer	Mark	Guidance
5(i)	a = 2t - 8	M1	Differentiate to find <i>a</i>
	$a = 0 \rightarrow t = 4$	M1	Set $a = 0$ and solve for t
	$Minimum v = -4 ms^{-1}$	A1	Full marks available for correct use of a <i>v</i> - <i>t</i> graph or correct use of " $t = -b/2a$ "
	Alternative	method for	question 5(i)
	$v = (t-4)^2 - 4$	M1	Attempt to complete the square for <i>v</i>
	[t=4]	M1	Choose the <i>t</i> value which gives minimum <i>v</i>
	$Minimum v = -4 ms^{-1}$	A1	
		3	
5(ii)	v = 0 when $(t - 2)(t - 6) = 0$	M1	Find values of <i>t</i> when $v = 0$, factorise or formula
	t = 2 or t = 6	A1	
	$[s = \frac{1}{3}t^3 - 4t^2 + 12t (+c)]$	M1	Integrate <i>v</i> to find <i>s</i>
		A1	Correct integration
	$0 \le t \le 2 \qquad s_1 = \frac{8}{3} - \frac{16}{24} = \frac{32}{3}$ $2 \le t \le 6 \ s_2 = (216/3 - 144 \ \square \ 72) - (8/3 - 16 \ \square \ 24) = -\frac{32}{3}$ $6 \le t \le 8 \qquad s_3 = (512/3 - 4 \ \square \ 8^2 \ \square \ 12 \ \square \ 8) - (216/3 - 144 \ \square \ 72) = \frac{32}{3}$	M1	Attempt to find s_1 , s_2 and s_3 Look for consideration of the need for 3 intervals Allow use of symmetry when finding s_1 , and s_3
		A1	2 correct values of displacement
	Total distance = 32 m	A1	All correct
		7	

9709/41

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Guidance
6(i)	Particle A: $T = 4 \sin \theta$ Particle B: $T = 2$	M1	Resolve forces for <i>A</i> and for <i>B</i>
		M1	Eliminate <i>T</i> and solve for θ
	$\theta = 30$	A1	
		3	
6(ii)(a)	A: $T-4 \sin 20 = 0.4a$ B: $2-T=0.2a$ System: $2-4 \sin 20 = (0.4 \Box 0.2)a$	M1	Apply Newton's second law to A or to B or to the system
		A1	Two correct equations
		M1	Solve for <i>a</i> or <i>T</i>
	T = 1.79 and $a = 1.05$	A1	Both correct
		4	
6(ii)(b)	$v^2 = 2 \Box 1.053 \Box 0.5 = 1.053$	M 1	Attempt to find <i>v</i> using their $a \neq \pm g$
	$v = 1.03 \text{ ms}^{-1}$	A1	
		2	

9709/41

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Mark	Guidance
6(ii)(c)	Loss in KE = $\frac{1}{2} \square 0.4 \square 1.053 = 0.2106$ Gain in PE = 0.4 $\square 10 \square d \sin 20$	M1	Attempt KE loss or PE gain for particle <i>A</i> only after particle <i>B</i> hits the ground.
		A1ft	Both correct, d is distance moved up the plane after B hits ground
	$\frac{1}{2} \Box 0.4 \Box 1.053 = 0.4 \Box 10 \Box d \sin 20$	M1	Apply KE loss = PE gain
		A1	FT Correct energy equation
	Total dist <i>A</i> moves up plane = $0.5 \Box d = 0.654$ m	A1	
		5	