Question	Answer	Marks	Guidance
1	Substitute -1 into $\mathrm{p}(x)$ and equate to zero	M1	Allow algebraic long division or the use of an identity with the remainder, in terms of m and k, equated to zero
	Obtain $-4+(k+1)+m+3 k=0$ or equivalent	$\mathbf{A 1}$	
	Obtain $m=3-4 k$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	State or imply non-modular equation $(4+2 x)^{2}=(3-5 x)^{2}$ or pair of linear equations	B1	
	Attempt solution of 3-term quadratic eqn or pair of linear equations	M1	
	Obtain $-\frac{1}{7}, \frac{7}{3}$	A1	SC B1 for $x=-\frac{1}{7}$ from one linear equation
		3	
2(ii)	Attempt correct process to solve $\mathrm{e}^{3 y}=k$ where $k>0$ from (i)	M1	
	Obtain 0.282 and no others	A1	
		2	

Question	Answer	Marks	Guidance
3	Use quotient rule to find first derivative or equivalent	*M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 \ln x-3 x \times \frac{1}{x}}{(\ln x)^{2}}$ or equivalent	A1	Condone lack of brackets in denominator unless specifically simplified to $2 \ln x$
	Equate first derivative to zero and attempt value of x from $\ln x=k$ oe	DM1	Must get as far as $x=$
	Obtain $x=\mathrm{e}$	A1	Allow ${ }^{1}$
	Obtain $y=3 \mathrm{e}$	A1	Allow $3 \mathrm{e}^{1}$ $\mathbf{S C 1}$: If $3 \ln x-3 x \times \frac{1}{x}=0$ seen with no reference to $\frac{\mathrm{d} y}{\mathrm{~d} x}$, then allow M1 A1 then following marks SC2: If denominator incorrect and numerator correct/reversed/added then max marks M0A0M1A1A1 SC3: If numerator reversed then max marks M1A0M1A1A1
		5	

Question	Answer	Marks	Guidance
4(a)	Use identity $2 \cos ^{2} x=1+\cos 2 x$	B1	
	Integrate to obtain form $x+\frac{1}{2} \sin 2 x$	B1	
	Integrate to obtain $-2 \cos 2 x$	B1	
	Apply limits correctly, retaining exactness	M1	Dependent on at least one B mark
	Obtain $4+\frac{1}{2} \pi$ or similarly simplified equivalent	A1	
		5	
4(b)	Use y values $\sqrt{\ln 3}, \sqrt{\ln 6}, \sqrt{\ln 9}$ or decimal equivalents	B1	Allow awrt 1.05, 1.34, 1.48, the correct level of accuracy may be implied by a correct answer
	Use correct formula, or equivalent, with $h=3$, and three y values	M1	
	Obtain $\frac{1}{2} \times 3(\sqrt{\ln 3}+2 \sqrt{\ln 6}+\sqrt{\ln 9})$ and hence 7.81	A1	Allow greater accuracy
		3	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	Carry out division to obtain quotient of form $x^{2}+k$	M1	
	Obtain quotient $x^{2}-4$	A1	Allow use of an identity
	Obtain remainder 4	A1	
		$\mathbf{3}$	SC: If only the remainder theorem is used to obtain 4 then B1

Question	Answer	Marks	Guidance
$5(\mathrm{ii})$	Integrate to obtain at least $k_{1} x^{3}$ and $k_{2} \ln (2 x+1)$ terms using the result from (i)	$* \mathbf{M 1}$	
	Obtain correct $\frac{1}{3} x^{3}-4 x+2 \ln (2 x+1)$	A1	DM1
	Apply limits and note or imply that constant k_{3} can be written $\ln \mathrm{e}^{k_{3}}$	$\mathbf{M 1}$	
	Apply appropriate logarithm properties correctly	$\mathbf{A 1}$	
	Obtain $\ln \left(49 \mathrm{e}^{-3}\right)$	$\mathbf{5}$	

Question	Answer	Marks	Guidance
6(i)	Equate $4 t^{2} \mathrm{e}^{-t}$ to 1 , rearrange to $t^{2}=\ldots$ and hence $t=\ldots$	M1	Allow M1 for $t=\sqrt{\frac{1}{4} e^{-t}}$
	Confirm $t=\frac{1}{2} \mathrm{e}^{\frac{1}{2} t}$ with necessary detail needed as answer is given	A1	
		2	
6(ii)	Use iterative process correctly at least once	M1	
	Obtain final answer $t=0.715$	A1	
	Show sufficient iterations to 5 sf to justify answer or show a sign change in the interval [$0.7145,0.7155$]	A1	SC: M1A1 from iterations to 4sf resulting in 0.71
		3	

Question	Answer	Marks	Guidance
6 (iii)	Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=3+12 \mathrm{e}^{-2 t}$	B1	
	Use product rule to find $\frac{\mathrm{d} y}{\mathrm{~d} t}$	M1	
	Obtain $8 t \mathrm{e}^{-t}-4 t^{2} \mathrm{e}^{-t}$	$\mathbf{A 1}$	M1
	Divide correctly to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}$	A1	Allow greater accuracy
	Substitute value from part (ii) to obtain 0.31	$\mathbf{5}$	

Question	Answer	Marks	Guidance
$7(\mathrm{a})(\mathrm{i})$	State $R=\sqrt{32}$ or equivalent or $5.657 \ldots$	$\mathbf{B 1}$	
	Use appropriate trigonometry to find α	$\mathbf{M 1}$	
	Obtain $\alpha=45$	$\mathbf{A 1}$	
		$\mathbf{3}$	$\mathbf{M 1}$
$7(\mathrm{a})$ (ii)	Carry out correct process to find one value of θ	$\mathbf{A 1}$	Ignore other positive values greater than 17.1
	Obtain 17.1	$\mathbf{2}$	

Question	Answer	Marks	Guidance
$7(\mathrm{~b})$	Use or imply $\cot 2 x=\frac{1}{\tan 2 x}$	B1	
	Use identity of form $\tan 2 x=\frac{ \pm 2 \tan x}{1 \pm \tan ^{2} x}$ to obtain equation in $\tan x$	M1	
	Obtain $6 \tan ^{2} x+10 \tan x-4=0$ or equivalent	A1	M1
	Attempt solution of 3-term quadratic equation for $\tan x$	A1	Allow greater accuracy
	Obtain $\tan x=\frac{1}{3}$ and hence 0.32	A1	Allow greater accuracy
	Obtain $\tan x=-2$ and hence 2.03 and no others between 0 and π	$\mathbf{6}$	

