Question	Answer	Marks	Guidance
1	Use logarithm subtraction property to produce logarithm of quotient	M1	B1
	Factorise at least as far as $x\left(x^{2}-4\right)$ and $x(x-2)$ or use correct algebraic long division to obtain a quotient of $x+2$ and a remainder of 0 from correct working	Allow B1 either before or after application of log property Allow B1 for equivalent using factorisation then use of addition rule	
	Obtain final answer $\ln (x+2)$ using correct process	A1 B1 for $\frac{(x+2)\left(x^{2}-2 x\right)}{\left(x^{2}-2 x\right)}$	
		$\mathbf{3}$	With no errors seen

Question	Answer		Guidance
2(i)	State or imply non-modular inequality $(3 x-5)^{2}<(x+3)^{2}$ or corresponding equation or pair of different linear equations/inequalities	B1	SC: Allow B1 for $x<4$ from only one linear inequality
	Attempt solution of 3-term quadratic equation/inequality or of two different linear equations/inequalities	M1	For M1, must get as far as 2 critical values
	Obtain critical values $\frac{1}{2}$ and 4	A1	
	State answer $\frac{1}{2}<x<4$ or equivalent	A1	If given as 2 separate statements, condone omission of 'and' or \cap but penalise inclusion of 'or' or \cup
		4	

Question	Answer	Marks	
2 (ii)	Attempt to find n (not necessarily an integer so far) from $3^{0.1 n}=$ or $<$ their positive upper value from part (i) or $3^{0.1 n+1}=$ or $<3 \times$ their positive upper value from part (i)	M1	$0 / 2$ for trial and improvement
	Conclude 12	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3	Use product rule to differentiate $x^{2} \ln y$	M1	Allow M1 for $2 x \ln y+x^{2} y^{-1}$ oe
	Obtain $2 x \ln y+x^{2} \times \frac{1}{y} \times \frac{\mathrm{d} y}{\mathrm{~d} x}$	A1	
	Obtain $\ldots+2+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	B1	B1 for $+2+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$, maybe implied by later work
	Substitute $x=3$ and $y=1$ to find value of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	*M1	Dependent on at least one $\frac{d y}{d x}$ present
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{14}$	A1	
	Attempt equation of line through (3,1) with gradient of normal	DM1	Allow one sign error
	Obtain $y=7 x-20$ or equivalent unsimplified	A1	FT on their perpendicular gradient
		7	

Question	Answer	Marks	Guidance
4(a)	Use identity $\tan ^{2} 3 x=\sec ^{2} 3 x-1$	B1	
	Integrate to obtain form $k_{1} \tan 3 x+k_{2} x$	M1	
	Obtain correct $\frac{1}{3} \tan 3 x-x+c$	A1	
		3	
4(b)	Express integrand as $\mathrm{e}^{2 x}+4 \mathrm{e}^{-x}$	B1	
	Integrate to obtain form $k_{3} \mathrm{e}^{2 x}+k_{4} \mathrm{e}^{-x}$	M1	
	Obtain correct $\frac{1}{2} \mathrm{e}^{2 x}-4 \mathrm{e}^{-x}$	A1	
	Use limits to obtain $\frac{1}{2} \mathrm{e}^{2}-4 \mathrm{e}^{-1}+\frac{7}{2}$ or similarly simplified equivalent	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Substitute $x=2$ and equate to zero	M1	Allow synthetic division for each- must result in an equation from each division
	Substitute $x=-1$ and equate to 27	M1	Allow unsimplified
	Obtain $4 a+2 b=-24$ and $a-b=48$ or equivalents	A1	Allow one error in each equation
	Solve a relevant pair of simultaneous linear equations	M1	Dependent at least one M mark
	Obtain $a=12, \quad b=-36$	A1	
		5	
5(ii)	Divide by $x-2$ at least as far as the x term to obtain $5 x^{2}+($ their $a+10) x \ldots$	M1	For synthetic division need to see 5 and their $a+10$ in the bottom line
	Obtain $5 x^{2}+22 x+8$	A1	
	Obtain $(x-2)(5 x+2)(x+4)$	A1	If solved using a calculator and then forming factors, must be correct for full marks
		3	

Question	Answer	Marks	Guidance
6 (i)	Use quotient rule (or product rule) to differentiate	M1	Penalise missing brackets by withholding the A mark unless recovered later
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}(2-5 x)-(-5)\left(8+x^{3}\right)}{(2-5 x)^{2}}$ or equivalent	A1	
	State or imply curve crosses x-axis when $x=-2$	B1	
	Substitute -2 to obtain 1	A1	
		4	
6(ii)	Equate numerator of first derivative to zero and rearrange as far as $k x^{3}=\ldots$ or equivalent	M1	
	Confirm given result $x=\sqrt{0.6 x+4 x^{-1}} \quad$ AG	A1	Condone in this part error(s) in denominator of derivative
		2	
6(iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.81	A1	
	Show sufficient iterations to 5 sf to justify answer or show a sign change in the interval [1.805, 1.815]	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	State or imply $\operatorname{cosec} 2 \theta=\frac{1}{2 \sin \theta \cos \theta}$	B1	
	Attempt to express left-hand side in terms of $\sin \theta$ and $\cos \theta$ only	M1	
	Simplify to confirm $\operatorname{cosec}^{2} \theta \quad$ AG	A1	
		3	
7(ii)	Use identity to express left-hand side in terms of $\sin 30$ or $\operatorname{cosec} 30$	M1	
	Obtain $\frac{2}{\sin 30}$ or $2 \operatorname{cosec} 30$ and confirm 4	A1	
		2	
7(iii)	Solve quadratic equation of the form $k \operatorname{cosec}^{2} \frac{\phi}{2}+\operatorname{cosec} \frac{\phi}{2}-12=0$ or	*M1	Allow sign errors
	$12 \sin ^{2} \frac{\phi}{2}-\sin \frac{\phi}{2}-k=0$ correctly for $\operatorname{cosec} \frac{1}{2} \phi$ or $\sin \frac{1}{2} \phi$ to find two values of $\sin \frac{1}{2} \phi$ or $\operatorname{cosec} \frac{1}{2} \phi$ Obtain $\sin \frac{1}{2} \phi=-\frac{1}{4}, \frac{1}{3}$	A1	
	Use correct process to find at least one correct value of ϕ from $\sin \frac{1}{2} \phi= \pm \frac{1}{4}, \pm \frac{1}{3}$	DM1	Allow for any rounded or truncated value
	Obtain any two of $-331.0,-29.0,38.9,321.1$	A1	Allow greater accuracy
	Obtain all four values and no others between -360 and 360	A1	Allow greater accuracy
		5	

