Question	Answer	Marks	Guidance
1(i)	$\left[(x-2)^{2}\right][+4]$	B1 DB1	2nd B1 dependent on 2 inside bracket
		2	
1 (ii)	$(x-2)^{2}<5 \rightarrow-\sqrt{5}<x-2$ and/or $x-2<\sqrt{5}$	M1	Allow e.g. $x-2< \pm \sqrt{5}, x-2= \pm \sqrt{5}$ and decimal equivalents for $\sqrt{5}$ For M1, ft from their(i). Also allow $\sqrt{ } 13$ instead of $\sqrt{ } 5$ for clear slip
	$2-\sqrt{5}<x<2+\sqrt{5}$	A1A1	A1 for each inequality - allow two separate statements but there must be 2 inequalities for x. Non-hence methods, if completely correct, score SC $1 / 3$. Condone \leqslant
		[3]	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$\frac{-5}{x}+\frac{5}{8 x^{3}}-\frac{1}{32 x^{5}}\left(\right.$ or $\left.-5 x^{-1}+\frac{5}{8} x^{-3}-\frac{1}{32} x^{-5}\right)$	B1B1B1	B1 for each correct term SCB1 for both $\frac{+5}{x} \& \frac{+1}{32 x^{5}}$
		$\mathbf{3}$	
2 (ii)	$1 \times 20+4 \times$ their $(-5)=0$	$\mathbf{M 1 A 1}$	Must be from exactly 2 terms SCB1 for $20+20=40$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(i)	Angle $E A D=$ Angle $A C D=\frac{3 \pi}{10}$ or 54° or 0.942 soi or Angle $D A C=\frac{\pi}{5}$ or 36° or 0.628 soi	B1	
	$A D=8 \sin \left(\frac{3 \pi}{10}\right) \text { or } 8 \cos \left(\frac{\pi}{5}\right)$	M1	Angles used must be correct
	$(\mathrm{AD}=) 6.47$	A1	
	Alternative method for question 3(i)		
	$A B=\frac{8}{\tan \left(\frac{\pi}{5}\right)} \text { or } A B=\frac{8 \sin \left(\frac{3 \pi}{10}\right)}{\sin \left(\frac{\pi}{5}\right)} \text { or 11.(01) }$	B1	Angles used must be correct
	$A D=11.0(1) \sin \frac{\pi}{5}$ oe	M1	
	$(\mathrm{AD}=) 6.47$	A1	
		3	
3(ii)	Area sector $=\frac{1}{2}(\text { theirAD })^{2} \times$ their $\left(\frac{\pi}{2}-\frac{\pi}{5}\right)$	M1	19.7(4)
	Area $\triangle A D C=\frac{1}{2} \times 8 \times$ their $A D \times \sin \frac{\pi}{5}$ or $\frac{1}{2} \times 8 \cos \left(\frac{3 \pi}{10}\right) \times 8 \sin \left(\frac{3 \pi}{10}\right)$	M1	$\begin{aligned} & \text { Or e.g. } 1 / 2 \text { their } A D \times \sqrt{8^{2}-\text { theirAD }^{2}} \text {. } \\ & 15.2(2) \end{aligned}$
	$($ Shaded area $=$) 35.0 or 34.9	A1	
		3	

Question	Answer	Marks	Guidance
4(i)	$\operatorname{Max}(\boldsymbol{a})$ is 8	B1	Allow $a=8$ or $a \leqslant 8$
	$\operatorname{Min}(\boldsymbol{b})$ is 24	B1	Allow $b=24$ or $b \geqslant 24$
		2	SCB1 for 8 and 24 seen
4(ii)	$\operatorname{gf}(x)=\frac{96}{x-1}-4 \text { or } \operatorname{gf}(x)=\frac{100-4 x}{x-1}$	B1	$2\left(\frac{48}{x-1}\right)-4$ is insufficient Apply ISW
		1	
4(iii)	$y=\frac{96}{x-1}-4 \rightarrow y+4=\frac{96}{x-1} \rightarrow x-1=\frac{96}{y+4}$	M1	FT from their(ii) provided (ii) involves algebraic fraction. Allow sign errors
	$(\mathrm{gf})^{-1}(x)=\frac{96}{x+4}+1$	A1	OR $\frac{100+x}{x+4}$. Must be a function of x. Apply ISW
		2	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$\frac{x}{2}[2+(x-1)(-/+0.02)]$ or $1.01 x-0.01 x^{2}$ or $0.99 x+0.01 x^{2} \quad \mathbf{0 e}$	$\mathbf{B 1}$	Allow - or +0.02 . Allow n used
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
5(ii)	Equate to 13 then either simplify to a 3-term quadratic equation or find at least 1 solution (need not be correct) to an unsimplified quadratic	M1	Expect $n^{2}-101 n+1300(=0)$ or $0.99 x+0.01 x^{2}=13$. Allow x used
	16	A1	Ignore 85.8 or 86
		2	
5(iii)	Use of $\frac{a\left(1-r^{n}\right)}{1-r}$ with $a=1, r=0.92, n=20$ soi	M1	
	$(=) 10.1$	A1	
	Use of $\left(S_{\infty}=\right) \frac{a}{1-r}$ with $a=1, r=0.92$	M1	OR $\quad \frac{(1)\left(1-0.92^{n}\right)}{1-0.92}=13 \rightarrow 0.92^{n}=-0.04$ oe
	$S_{\infty}=12.5$ so never reaches target or <13	A1	Conclusion required - 'Shown' is insufficient No solution so never reaches target or <13
		4	

Question	Answer	Marks	Guidance
6(i)	$\mathbf{M F}=-4 \mathbf{i}+2 \mathbf{j}+7 \mathbf{k}$	B1	
		1	
6(ii)	$\mathbf{F N}=2 \mathbf{i}-\mathbf{j}$	B1	
		1	
6(iii)	$\mathbf{M N}=-2 \mathbf{i}+\mathbf{j}+7 \mathbf{k}$	B1	FT on their (MF+ FN)
		1	

Question	Answer	Marks	Guidance
6(iv)	$\mathbf{M F} \mathbf{M N}=8+2+49=59$	*M1	MF.MN or FM.NM but allow if one is reversed (implied by -59)
	$\|\mathbf{M F}\| \times\|\mathbf{M N}\|=\sqrt{4^{2}+2^{2}+7^{2}} \times \sqrt{2^{2}+1^{2}+7^{2}}$	*DM1	Product of modulus. At least one methodically correct
	$\cos F M N=\frac{+/-59}{\sqrt{69} \times \sqrt{54}}$	DM1	All linked correctly. Note $\sqrt{69} \times \sqrt{54}=9 \sqrt{46}$
	$F M N=14.9^{\circ}$ or 0.259	A1	Do not allow if exactly 1 vector is reversed - even if adjusted finally
		4	

Question	Answer	Marks	
$7(\mathrm{i})$	$D=(5,1)$	B1	
		$\mathbf{1}$	
$7(\mathrm{ii})$	$(x-5)^{2}+(y-1)^{2}=20$ oe	B1	FT on their D. Apply ISW, oe but not to contain square roots
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(iii)	$(x-1)^{2}+(y-3)^{2}=(9-x)^{2}+(y+1)^{2}$ soi	M1	Allow 1 sign slip For M1 allow with $\sqrt{ }$ signs round both sides but sides must be equated
	$x^{2}-2 x+1+y^{2}-6 y+9=x^{2}-18 x+81+y^{2}+2 y+1$	A1	
	$y=2 x-9$ www AG	A1	
	Alternative method for question 7(iii)		
	grad. of $A B=-1 / 2 \rightarrow \operatorname{grad}$ of perp bisector $=\frac{-1}{-1 / 2}$	M1	
	Equation of perp. bisector is $y-1=2(x-5)$	A1	
	$y=2 x-9$ www AG	A1	
		3	
7(iv)	Eliminate y ($\operatorname{or} x$) using equations in (ii) and (iii)	*M1	To give an (unsimplified) quadratic equation
	$\begin{aligned} & 5 x^{2}-50 x+105(=0) \text { or } 5(x-5)^{2}=20 \text { or } 5 y^{2}-10 y-75(=0) \text { or } \\ & 5(y-1)^{2}=80 \end{aligned}$	DM1	Simplify to one of the forms shown on the right (allow arithmetic slips)
	$x=3$ and 7, or $y=-3$ and 5	A1	
	$(3,-3),(7,5)$	A1	Both pairs of $x \& y$ correct implies A1A1. SC B2 for no working
		4	

Question	Answer	Marks	Guidance
8	$\mathrm{f}^{\prime}(-1)=0 \rightarrow 3-a+b=0 \quad \mathrm{f}^{\prime}(3)=0 \rightarrow 27+3 a+b=0$	M1	Stationary points at $x=-1 \& x=3$ gives sim. equations in $a \& b$
	$a=-6$	A1	Solve simultaneous equation
	$b=-9$	A1	
	Hence $\mathrm{f}^{\prime}(x)=3 x^{2}-6 x-9 \rightarrow \mathrm{f}(x)=x^{3}-3 x^{2}-9 x(+c)$	B1	FT correct integration for their a, b (numerical a, b)
	$2=-1-3+9+c$	M1	Sub $x=-1, y=2$ into their integrated $\mathrm{f}(x) . c$ must be present
	$c=-3$	A1	FT from their $\mathrm{f}(x)$
	$\mathrm{f}(3)=k \rightarrow k=27-27-27-3$	M1	Sub $x=3, y=k$ into their integrated $\mathrm{f}(x)$ (Allow c omitted)
	$k=-30$	A1	
		8	

Question	Answer	Marks	Guidance
9 9(i)	$q \leqslant \mathrm{f}(x) \leqslant p+q$	B1B1	B1 each inequality - allow two separate statements Accept $<,(q, p+q),[q, p+q]$ Condone y or x or f in place of $\mathrm{f}(x)$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
9(ii)	(a) 2	B1	$\text { Allow } \frac{\pi}{4}, \frac{3 \pi}{4}$
	(b) 3	B1	Allow $0, \frac{\pi}{2}, \pi$
	(c) 4	B1	$\text { Allow } \frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \frac{7 \pi}{8}$
		3	
9(iii)	$3 \sin ^{2} 2 x+2=4 \rightarrow \sin ^{2} 2 x=\frac{2}{3}$ soi	M1	
	$\operatorname{Sin} 2 x=(\pm) 0.816(5)$. Allow $\sin 2 x=(\pm) \sqrt{\frac{2}{3}}$ or $2 x=\sin ^{-1}(\pm) \sqrt{\frac{2}{3}}$	A1	OR Implied by at least one correct value for x. Allow $\sin ^{-1}$ form
	$(2 x=)$ at least two of $0.955(3), 2.18(6), 4.09(7), 5.32(8)$	A1	Can be implied by corresponding values of x below Allow for at least two of $0.304 \pi, 0.696 \pi, 1.30(4) \pi, 1.69(6) \pi$ OR at least two of $54.7(4)^{\circ}, 125.2(6)^{\circ}, 234.7(4)^{\circ}, 305.2(6)^{\circ}$
	$(x=) 0.478,1.09,2.05,2.66$.	A1A1	Allow $0.152 \pi, 0.348 \pi, 0.652 \pi, 0.848 \pi$ SC A1 for 2 or 3 correct. SC A1 for all of $27.4^{\circ}, 62.6^{\circ}, 117.4^{\circ}, 152.6^{\circ}$ $\operatorname{Sin} 2 x= \pm \frac{2}{3} \rightarrow x=0.365,1.21,1.94,2.78$ scores SC M1A0A0A1
		5	

Question	Answer	Marks	Guidance
10(i)	$\left[\frac{1}{2}(3 x+4)^{-\frac{1}{2}}\right]$	B1	oe
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(3 x+4)^{-\frac{1}{2}}\right] \times 3$	B1	Must have ' $\times 3$ '
	$\text { At } x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{8} \text { soi }$	B1	
	Line through (4, their 4) with gradient their $\frac{3}{8}$	M1	If $y \neq 4$ is used then clear evidence of substitution of $x=4$ is needed
	Equation of tangent is $y-4=\frac{3}{8}(x-4)$ or $y=\frac{3}{8} x+\frac{5}{2}$	A1	oe
		5	

Question	Answer	Marks	Guidance
10(ii)	Area under line $=\frac{1}{2}\left(4+\frac{5}{2}\right) \times 4=13$	B1	OR $\int_{0}^{4} \frac{3}{8} x+\frac{5}{2}=\left[\frac{3}{16} x^{2}+\frac{5}{2} x\right]=[3+10]=13$
	Area under curve: $\int(3 x+4)^{\frac{1}{2}}=\left[\frac{(3 x+4)^{3 / 2}}{3 / 2}\right][\div 3]$	B1B1	Allow if seen as part of the difference of 2 integrals First B1 for integral without $[\div 3]$ Second B1 must have $[\div 3]$
	$\frac{128}{9}-\frac{16}{9}=\frac{112}{9}=12 \frac{4}{9}$	M1	Apply limits $0 \rightarrow 4$ to an integrated expression
	Area $=13-12 \frac{4}{9}=\frac{5}{9}($ or 0.556$)$	A1	
	Alternative method for question 10(ii)		
	Area for line $=1 / 2 \times 4 \times 3 / 2=3$	B1	OR $\int_{5 / 2}^{4} \frac{1}{3}(8 y-20)=\frac{1}{3}\left[4 y^{2}-20\right]=\frac{1}{3}[-16+25]=3$
	Area for curve $=\int \frac{1}{6}\left(y^{2}-4\right)=\left[\frac{y^{3}}{9}\right]-\left[\frac{4 y}{3}\right]$	B1B1	
	$\left(\frac{64}{9}-\frac{16}{3}\right)-\left(\frac{8}{9}-\frac{8}{3}\right)=\frac{32}{9}$	M1	Apply limits $2 \rightarrow 4$ to an integrated expression for curve
	Area $=\frac{32}{9}-3=\frac{5}{9}($ or 0.556$)$	A1	
		5	

Question	Answer	Marks	Guidance
$10(\mathrm{iii})$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$	B1	
	$\frac{3}{2}(3 x+4)^{-\frac{1}{2}}=\frac{1}{2}$	M1	Allow M1 for $\frac{3}{2}(3 x+4)^{-\frac{1}{2}}=2$.
	$(3 x+4)^{\frac{1}{2}}=3 \rightarrow 3 x+4=9 \rightarrow x=\frac{\mathbf{5}}{\mathbf{3}}$ oe	$\mathbf{A 1}$	
		$\mathbf{3}$	

