Question	Answer	Marks	Guidance
1	For $\left(\frac{2}{\boldsymbol{x}}-3 x\right)^{5}$ term in x is 10 or $5 \mathrm{C}_{3}$ or $5 \mathrm{C} 2 \times\left(\frac{2}{x}\right)^{2} \times(-3 x)^{3}$ or	B2,1	3 elements required. -1 for each error with or without x 's. Can be seen in an expansion.
	$\left(\frac{2}{x}\right)^{5} \frac{5.4 .3}{3!}\left(-\frac{3}{2} x^{2}\right)^{3}$ or $(-3 x)^{5} \frac{5.4}{2!}\left(\frac{2}{3 x^{2}}\right)^{2}$	B1	Allow $-1080 x$ Allow if expansion stops at this term. Allow from expanding brackets.
	-1080 identified	$\mathbf{3}$	

Question	Answer	Marks	
2	Midpoint of $A B$ is $(5,1)$	B1	Can be seen in working, accept $\left(\frac{10}{2}, \frac{2}{2}\right)$.
	$m_{A B}=-1 / 2$ oe	B1	
	C to $(5,1)$ has gradient 2	$* \mathbf{M 1}$	Use of $m_{1} \times m_{2}=-1$.
	Forming equation of line $(y=2 x-9)$	DM1	Using their perpendicular gradient and their midpoint to form the equation.
	$C(0,-9)$ or $y=-9$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
$3(\mathrm{i})$	$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=7 \times-0.05$	M1	Multiply numerical gradient at $x=2$ by ± 0.05.
	$-0.35(\mathrm{units} / \mathrm{s})$ or Decreasing at a rate of $(+) 0.35$	$\mathbf{A 1}$	Ignore notation and omission of units
	3(ii)	$(y)=\frac{x^{4}}{4}+\frac{4}{x}(+c)$ oe	$\mathbf{2}$

Question	Answer	Marks	Guidance
4(i)	$a^{2}+2 a b+b^{2}, a^{2}-2 a b+b^{2}$	B1	Correct expansions.
	$\sin ^{2} x+\cos ^{2} x=1$ used $\rightarrow(a+b)^{2}+(a-b)^{2}=1$	M1	Appropriate use of $\sin ^{2} x+\cos ^{2} x=1$ with $(a+b)^{2}$ and $(a-b)^{2}$
	$a^{2}+b^{2}=1 / 2$	A1	No evidence of $\pm 2 a b$, scores $2 / 3$
	Alternative method for question 4(i)		
	$2 a=(\mathrm{s}+\mathrm{c}) \& 2 b=(\mathrm{s}-\mathrm{c})$ or $a=1 / 2(\mathrm{~s}+\mathrm{c}) \& b=1 / 2(\mathrm{~s}-\mathrm{c})$	B1	
	$a^{2}+b^{2}=\frac{1}{4}(s+c)^{2}+\frac{1}{4}(s-c)^{2}=1 / 2\left(\mathrm{~s}^{2}+\mathrm{c}^{2}\right)$	M1	Appropriate use of $\sin ^{2} x+\cos ^{2} x=1$
	$a^{2}+b^{2}=1 / 2$	A1	Method using only $(\sin x-b)^{2}$ and $(a-\cos x)^{2}$ scores $0 / 3$.
		3	SC B1 for assuming θ is acute giving $a=\frac{1}{\sqrt{5}}+b$ or $2 \sqrt{5}-b$

Question	Answer	Marks	Guidance
4(ii)	$\tan x=\frac{\sin x}{\cos x} \rightarrow \frac{a+b}{a-b}=2$	M1	Use of $\tan x=\frac{\sin x}{\cos x}$ to form an equation in a and b only
	$a=3 b$	A1	
		2	

Question	Answer	Marks	
5	Perimeter of $A O C=2 r+r \theta$	$\mathbf{B 1}$	
	Angle $C O B=\pi-\theta$	$\mathbf{B 1}$	Could be on the diagram. Condone $180-\theta$.
	Perimeter of $B O C=2 r+r(\pi-\theta)$	$\mathbf{B 1}$	FT on angle $C O B$ if of form $(k \pi-\theta), k>0$.
	$(2 r+) \pi r-r \theta=2((2 r)+r \theta)$ $\left(2+\pi-\theta=4+2 \theta \rightarrow \theta=\frac{\pi-2}{3}\right)$	M1	Sets up equation using $r(k \pi-\theta)$ and $\times 2$ on correct side. Condone any omissions of OA, OB and/or OC.
	$\theta=0.38$	$\mathbf{A 1}$	Equivalent answer in degrees scores A0.
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
6(i)	3, -3	B1	Accept ± 3
	$-1 / 2$	B1	
	$21 / 2$	B1	
		3	Condone misuse of inequality signs.
6(ii)			Only mark the curve from $0 \rightarrow 2 \pi$. If the x axis is not labelled assume that $0 \rightarrow 2 \pi$ is the range shown. Labels on axes are not required.
	2 complete oscillations of a cosine curve starting with a maximum at ($0, a), \mathrm{a}>0$	B1	
	Fully correct curve which must appear to level off at 0 and/or 2π.	B1	
	Line starting on positive y axis and finishing below the x axis at 2π. Must be straight.	B1	
		3	
6(iii)	4	B1	
		1	

Question	Answer	Marks	Guidance
7(i)	$\left(\mathrm{f}^{-1}(x)\right)=\frac{x+2}{3} \text { oe }$	B1	
	$y=\frac{2 x+3}{x-1} \rightarrow(x-1) y=2 x+3 \rightarrow x(y-2)=y+3$	M1	Correct method to obtain $x=$, (or $y=$, if interchanged) but condone $+/$ - sign errors
	$\left(\mathrm{g}^{-1}(x)\right.$ or $\left.y\right)=\frac{x+3}{x-2}$ oe $\left(\operatorname{eg} \frac{5}{x-2}+1\right)$	A1	Must be in terms of x
	$x \neq 2$ only	B1	FT for value of x from their denominator $=0$
		4	
7(ii)	$(f g(x)=) \frac{3(2 x+3)}{x-1}-2\left(=\frac{7}{3}\right)$	B1	
	$\begin{aligned} & 18 x+27=13 x-13 \text { or } 3(4 x+11)=7(x-1) \\ & (5 x=-40) \end{aligned}$	M1	Correct method from their $f g=\frac{7}{3}$ leading to a linear equation and collect like terms. Condone omission of $2(x-1)$.
	Alternative method for question 7(ii)		
	$\left(\mathrm{f}^{-1}\left(\frac{7}{3}\right)\right)=\frac{13}{9}$	B1	
	$\frac{2 x+3}{x-1}=\frac{13}{9} \rightarrow 9(2 x+3)=13(x-1)(\rightarrow 5 x=-40)$	M1	Correct method from $g(x)=$ their $\frac{13}{9}$ leading to a linear equation and collect like terms.
	$x=-8$	A1	
		3	

Question	Answer	Marks	Guidance
8(i)	$\begin{aligned} & 6 \times 3+-2 \times \mathrm{k}+-6 \times-3=0 \\ & (18-2 k+18=0) \end{aligned}$	M1	Use of scalar product $=0$. Could be $\overrightarrow{A O} \cdot \overrightarrow{O B}, \overrightarrow{A O} \cdot \overrightarrow{B O}$ or $\overrightarrow{O A} \cdot \overrightarrow{B O}$
	$k=18$	A1	
	Alternative method for question 8(i)		
	$76+18+k^{2}=18+(k+2)^{2}$	M1	Use of Pythagoras with appropriate lengths.
	$k=18$	A1	
		2	
8(ii)	$36+4+36=9+k^{2}+9$	M1	Use of modulus leading to an equation and solve to $k=$ or $k^{2}=$
	$k= \pm \sqrt{ } 58$ or ± 7.62	A1	Accept exact or decimal answers. Allow decimals to greater accuracy.
		2	

Question	Answer	Marks	Guidance
8(iii)	$\overrightarrow{A B}=\left(\begin{array}{c}-3 \\ 6 \\ 3\end{array}\right) \rightarrow \overrightarrow{A C}=\left(\begin{array}{c}-2 \\ 4 \\ 2\end{array}\right)$ then $\overrightarrow{O A}+\overrightarrow{A C}$	M1	Complete method using $\overrightarrow{A C}= \pm 2 / 3 \overrightarrow{A B}$ And then $\overrightarrow{O A}+$ their $\overrightarrow{A C}$
	$\overrightarrow{O C}=\left(\begin{array}{c}4 \\ 2 \\ -4\end{array}\right)$	A1	
	$\div \sqrt{(\text { their } 4)^{2}+(\text { their } 2)^{2}+(\text { their }-4)^{2}}$	M1	Divides by modulus of their $\overrightarrow{O C}$
	$=\frac{1}{6}\left(\begin{array}{c}4 \\ 2 \\ -4\end{array}\right)$ or $\frac{1}{6}(4 i+2 j-4 k)$	A1	
	Alternative method for question 8(iii)		
	Let $\overrightarrow{O C}=\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \rightarrow \overrightarrow{A C}=\left(\begin{array}{c}p-6 \\ q+2 \\ r+6\end{array}\right) \& \overrightarrow{C B}=\left(\begin{array}{c}3-p \\ 4-q \\ -3-r\end{array}\right)$	M1	Correct method. Equates coefficients leading to values for p, q, r
	$\begin{aligned} & p-6=2(3-p) ; q+2=2(4-q) ; r+6=2(-3-r) \\ & \rightarrow p=4, q=2 \& r=-4 \end{aligned}$	A1	
	$\div \sqrt{(\text { their } 4)^{2}+(\text { their } 2)^{2}+(\text { their }-4)^{2}}$	M1	Divides by modulus of their $\overrightarrow{O C}$
	$=\frac{1}{6}\left(\begin{array}{c}4 \\ 2 \\ -4\end{array}\right)$ or $\frac{1}{6}(4 i+2 j-4 k)$	A1	

Question	Answer	Marks	Guidance
8(iii)	Alternative method for question 8(iii)		
	$\begin{aligned} \overrightarrow{C B}= & \overrightarrow{O B}-\overrightarrow{O C} \therefore 2(\overrightarrow{O B}-\overrightarrow{O C})=\overrightarrow{O C}-\overrightarrow{O A} \\ & \rightarrow 2 \overrightarrow{O B}+\overrightarrow{O A}=3 \overrightarrow{O C} \therefore 3 \overrightarrow{O C}=\left(\begin{array}{c} 12 \\ 6 \\ -12 \end{array}\right) \end{aligned}$	M1	Correct method. Gets to a numerical expression for $\mathrm{k} \overrightarrow{O C}$ from $\overrightarrow{O A} \& \overrightarrow{O B}$.
	$\overrightarrow{O C}=\left(\begin{array}{c}4 \\ 2 \\ -4\end{array}\right)$	A1	
	$\div \sqrt{(\text { their } 4)^{2}+(\text { their } 2)^{2}+(\text { their }-4)^{2}}$	M1	Divides by modulus of their $\overrightarrow{O C}$
	$=\frac{1}{6}\left(\begin{array}{c}4 \\ 2 \\ -4\end{array}\right)$ or $\frac{1}{6}(4 i+2 j-4 k)$	A1	
		4	

Question	Answer	Marks	Guidance
9	For $\mathrm{C}_{1}: \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-4 \rightarrow m=2$	B1	
	$y-$ 'their 4 ' $=$ 'their $\mathrm{m} '(x-3)$ or using $y=m x+c$	M1	Use of : $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and (3, their 4) to find the tangent equation.
	$y-4=2(x-3)$ or $y=2 x-2$	A1	If using $=m x+c$, getting $c=-2$ is enough.
	$2 x-2=\sqrt{4 x+k}\left(\rightarrow 4 x^{2}-12 x+4-k=0\right)$	*M1	Forms an equation in one variable using tangent \& C_{2}
	Use of $b^{2}-4 a c=0$ on a 3 term quadratic set to 0.	*DM1	Uses 'discriminant $=0$ '
	$144=16(4-k) \rightarrow k=-5$	A1	
	$4 x^{2}-12 x+4-k=0 \rightarrow 4 x^{2}-12 x+9=0$	DM1	Uses k to form a 3 term quadratic in x
	$x=\frac{3}{2}\left(\right.$ or $\left.\frac{1}{2}\right), y=1($ or -1$)$.	A1	Condone 'correct' extra solution.
	Alternative method for question 9		
	For $\mathrm{C}_{1}: \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-4 \rightarrow m=2$	B1	
	$y-$ 'their 4 ' $=$ 'their m ' $(x-3)$ or using $y=m x+c$	M1	Use of : $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and (3, their 4) to find the tangent equation.
	$y-4=2(x-3)$ or $y=2 x-2$	A1	If using $=m x+c$, getting $c=-2$ is enough.
	For $\mathrm{C}_{2}: \frac{d y}{d x}=A(4 x+k)^{-\frac{1}{2}}$	*M1	Finds $\frac{d y}{d x}$ for C_{2} in the form $A(4 x+k)^{-\frac{1}{2}}$

Question	Answer	Marks	Guidance
9	At P: 'their 2 ' $=A(4 x+k)^{-\frac{1}{2}} \prime \rightarrow\left(x=\frac{1-k}{4}\right.$ or $\left.4 x+k=1\right)$	*DM1	Equating 'their 2' to 'their $\frac{d y}{d x}$, and simplify to form a linear equation linking $4 x+k$ and a constant.
	$(2 x-2)^{2}=4 x+k \rightarrow(2 x-2)^{2}=1 \rightarrow\left(4 x^{2}-8 x+3=0\right)$	DM1	Using their $y=2 x-2, y^{2}=4 x+k$ and their $4 x+k=1$ (but not $=0$) to form a 3 term quadratic in x.
	$x=\frac{3}{2}\left(\right.$ or $\left.\frac{1}{2}\right)$ and from $k=-5(o r-1)$	A1	Needs correct values for x and k.
	from $y^{2}=4 x+k, y=1($ or -1$)$.	A1	Condone 'correct' extra solution.
	Alternative method for question 9		
	For $\mathrm{C}_{1}: \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-4 \rightarrow m=2$	B1	
	$y-$ 'their $4^{\prime}=$ 'their $\mathrm{m}^{\prime}(x-3)$ or using $y=m x+c$	M1	Use of : $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and (3, their 4) to find the tangent equation.
	$y-4=2(x-3)$ or $y=2 x-2$	A1	If using $=m x+c$, getting $c=-2$ is enough.
	For $\mathrm{C}_{2}: \frac{d y}{d x}=A(4 x+k)^{-\frac{1}{2}}$	*M1	Finds $\frac{d y}{d x}$ for C_{2} in the form $A(4 x+k)^{-\frac{1}{2}}$
	At P: 'their 2 ' $=A(4 x+k)^{-\frac{1}{2}} " \rightarrow\left(x=\frac{1-k}{4}\right.$ or $\left.4 x+k=1\right)$	*DM1	Equating 'their 2' to 'their $\frac{d y}{d x}$, and simplify to form a linear equation linking $4 x+k$ and a constant.
	From $4 x+k=1$ and $y^{2}=4 x+k \rightarrow y^{2}=1$	DM1	Using their $4 x+k=1$ (but not $=0$) and C_{2} to form $y^{2}=$ a constant

Question	Answer	Marks	Guidance
9	$y=1($ or -1$)$ and $x=\frac{3}{2}\left(\right.$ or $\left.\frac{1}{2}\right)$	$\mathbf{A 1}$	Needs correct values for y and x.
	From $4 x+k=1, k=-5($ or -1$)$	$\mathbf{A 1}$	Condone 'correct' extra solution
		$\mathbf{8}$	

Question	Answer	Marks	Guidance
10(a)(i)	$S_{10}=S_{15}-S_{10}$ or $\mathrm{S}_{10}=\mathrm{S}_{(11 \text { to } 15)}$	M1	Either statement seen or implied.
	$5(2 a+9 d)$ oe	B1	
	$7.5(2 a+14 d)-5(2 a+9 d) \text { or } \frac{5}{2}[(a+10 d)+(a+14 d)] \text { oe }$	A1	
	$d=\frac{a}{3} \mathbf{A G}$	A1	Correct answer from convincing working
		4	Condone starting with $d=\frac{a}{3}$ and evaluating both summations as 25 a .
10(a)(ii)	$(a+9 d)=36+(a+3 d)$	M1	Correct use of $a+(n-1) d$ twice and addition of ± 36
	$a=18$	A1	
		2	Correct answer www scores 2/2

Question	Answer	Marks	Guidance
10(b)	$S_{\infty}=9 \times S_{4} ; \frac{a}{1-r}=9 \frac{a\left(1-r^{4}\right)}{1-r} \text { or } 9\left(a+a r+a r^{2}+a r^{3}\right)$	B1	May have 12 in place of a.
	$9\left(1-r^{\mathrm{n}}\right)=1$ where $n=3,4$ or 5	M1	Correctly deals with a and correctly eliminates ' $1-r$ '
	$r^{4}=\frac{8}{9} \text { oe }$	A1	
	$\left(5^{\text {th }}\right.$ term $\left.=\right) 10^{2} / 3$ or 10.7	A1	
		4	Final answer of 10.6 suggests premature approximation - award $3 / 4$ www.

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(4 x+1)^{-\frac{1}{2}}\right][\times 4]\left[-\frac{9}{2}(4 x+1)^{-\frac{3}{2}}\right][\times 4]$	B1B1B1	B1 B1 for each, without $\times 4$. B1 for $\times 4$ twice.
	$\left(\frac{2}{\sqrt{4 x+1}}-\frac{18}{(\sqrt{4 x+1})^{3}}\right.$ or $\left.\frac{8 x-16}{(4 x+1)^{\frac{3}{2}}}\right)$		SC If no other marks awarded award B1 for both powers of $(4 x+1)$ correct.
	$\int y \mathrm{~d} x=\left[\frac{(4 x+1)^{\frac{3}{2}}}{\frac{3}{2}}\right][\div 4]+\left[\frac{9(4 x+1)^{\frac{1}{2}}}{\frac{1}{2}}\right][\div 4](+\mathrm{C})$	B1B1B1	B1 B1 for each, without $\div 4$. B1 for $\div 4$ twice. +C not required.
	$\left(\frac{(\sqrt{4 x+1})^{3}}{6}+\frac{9}{2}(\sqrt{4 x+1})(+C)\right)$		SC If no other marks awarded, B1 for both powers of $(4 x+1)$ correct.
		6	
11(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow \frac{2}{\sqrt{4 x+1}}-\frac{18}{(4 x+1)^{\frac{3}{2}}}=0$	M1	Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 (and attempts to solve
	$4 x+1=9$ or $(4 x+1)^{2}=81$	A1	Must be from correct differential.
	$x=2, y=6$ or M is $(2,6)$ only .	A1	Both values required. Must be from correct differential.
		3	

Question	Answer	Marks	Guidance
11(iii)	Realises area is $\int y \mathrm{~d} x$ and attempt to use their 2 and sight of 0 .	*M1	Needs to use their integral and to see 'their 2' substituted.
	Uses limits 0 to 2 correctly $\rightarrow[4.5+13.5]-\left[\frac{1}{6}+4.5\right](=131 / 3)$	DM1	Uses both 0 and 'their 2' and subtracts. Condone wrong way round.
	$\left(\right.$ Area $=1^{11 / 3}$ or 1.33	A1	Must be from a correct differential and integral.
		3	$131 / 3$ or $11 / 3$ with little or no working scores M1DM0A0.

