| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 1(i) | Ind term $=(2 x)^{3} \times\left(\frac{k}{x}\right)^{3} \times{ }_{6} \mathrm{C}_{3}$ | B2,1,0 | Term must be isolated |
|  | $=540 \rightarrow k=11 / 2$ | B1 |  |
|  |  | 3 |  |
| 1(ii) | Term, in $x^{2}$ is $(2 x)^{4} \times\left(\frac{k}{x}\right)^{2} \times{ }_{6} \mathrm{C}_{2}$ | B1 | All correct - even if $k$ incorrect. |
|  | $15 \times 16 \times k^{2}=540\left(\right.$ or $\left.540 x^{2}\right)$ | B1 | FT For $240 k^{2}$ or $240 k^{2} x^{2}$ |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 2(i) | Eliminates $x$ or $y \rightarrow y^{2}-4 y+c-3=0$ or $x^{2}+(2 c-16) x+c^{2}-48=0$ | M1 | Eliminates $x$ or $y$ completely to a quadratic |
|  | Uses $b^{2}=4 a c \rightarrow 4 c-28=0$ | M1 | Uses discriminant $=0 .(\mathrm{c}$ the only variable $)$ <br> Any valid method (may be seen in part (i)) |
|  | $c=7$ | A1 |  |
|  | Alternative method for question 2(i) |  |  |
|  | $\frac{d y}{d x}=\frac{1}{2 \sqrt{(x+3)}}=\frac{1}{4}$ | M1 |  |
|  | Solving | M1 |  |
|  | $c=7$ | A1 |  |
|  |  | 3 |  |
| 2(ii) | Uses $c=7, y^{2}-4 y+4=0$ | M1 | Ignore (1,-2), c=-9 |
|  | $(1,2)$ | A1 |  |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 3 | Uses $A=1 / 2 r^{2} \theta$ | M1 | Uses area formula. |
|  | $\theta=\frac{2 A}{r^{2}}$ | A1 |  |
|  | $P=r+r+r \theta$ | B1 |  |
|  | $P=2 r+\frac{2 A}{r}$ | A1 | Correct simplified expression for $P$. |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4(i) | Gradient of $A B=-1 / 2 \rightarrow$ Gradient of $B C=2$ | M1 | Use of $m_{1} \cdot m_{2}=-1$ for correct lines |
|  | Forms equation in $h \frac{3 h-2}{h}=2$ | M1 | Uses normal line equation or gradients for $h$. |
|  | $h=2$ | A1 |  |
|  | Alternative method for question 4(i) |  |  |
|  | Vectors $\mathrm{AB} \cdot \mathrm{BC}=0$ | M1 | Use of vectors AB and BC |
|  | Solving | M1 |  |
|  | $h=2$ | A1 |  |
|  | Alternative method for question 4(i) |  |  |
|  | Use of Pythagoras to find 3 lengths | M1 |  |
|  | Solving | M1 |  |
|  | $h=2$ | A1 |  |
|  |  | 3 |  |
| 4(ii) | $y$ coordinate of $D$ is $6,(3 \times$ 'their' h) $\frac{6-0}{x-4}=2 \rightarrow x=7 \rightarrow D(7,6)$ | B1 | FT |
|  | Vectors: $\mathrm{AD} . \mathrm{AB}=0$ | M1 A1 | Must use $\mathrm{y}=6$ <br> Realises the $y$ values of $C$ and $D$ are equal. Uses gradient or line equation to find $x$. |
|  |  | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 5(i) | $-2(x-3)^{2}+15 \quad(a=-3, b=15)$ | B1 B1 | Or seen as $a=-3, b=15 \mathrm{~B} 1$ for each value |
|  |  | 2 |  |
| 5(ii) | $(\mathrm{f}(x) \leqslant) 15$ | B1 | FT for $(\leqslant)$ their " $b$ " Don't accept $(3,15)$ alone |
|  |  | 1 |  |
| 5(iii) | $\mathrm{gf}(\mathrm{x})=2\left(-2 x^{2}+12 x-3\right)+5=-4 x^{2}+24 x-6+5$ | B1 |  |
|  | $\operatorname{gf}(x)+1=0 \rightarrow-4 x^{2}+24 x=0$ | M1 |  |
|  | $x=0$ or 6 | A1 | Forms and attempts to solve a quadratic Both answers given. |
|  |  | 3 |  |


| Question | Answer |  | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 6(i) | $\mathrm{LHS}=\left(\frac{1}{c}-\frac{s}{c}\right)^{2}=\frac{(1-s)(1-s)}{c^{2}}=\frac{(1-s)(1-s)}{1-s^{2}}$ |  | B1 | Expresses tan in terms of sin and cos |
|  |  |  | B1 | correctly $1-\mathrm{s}^{2}$ as the denominator |
|  | $=\frac{(1-s)(1-s)}{(1-s)(1+s)}$ |  | M1 | Factors and correct cancelling www |
|  | $\frac{1-\sin x}{1+\sin x}$ | AG | A1 |  |
|  |  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(ii) | Uses part (i) to obtain $\frac{1-\sin 2 x}{1+\sin 2 x}=\frac{1}{3} \rightarrow \sin 2 x=1 / 2$ | M1 | Realises use of $2 x$ and makes $\sin 2 x$ the subject |
|  | $x=\frac{\pi}{12}$ | A1 | Allow decimal (0.262) |
|  | $\text { (or) } x=\frac{5 \pi}{12}$ | A1 | FT for $1 / 2 \pi-1$ st answer. <br> Allow decimal (1.31) <br> $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$ only, and no others in range. <br> SC $\sin x=1 / 2 \rightarrow \frac{\pi}{6} \frac{5 \pi}{6}$ B1 |
|  |  | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7(i) | $\begin{aligned} & \overrightarrow{A M}=1.5 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k} \\ & \overrightarrow{G M}=6.5 \mathbf{i}-4 \mathbf{j}-5 \mathbf{k} \end{aligned}$ | B3,2,1 | Loses 1 mark for each error. |
|  |  | 3 |  |
| 7(ii) | $\overrightarrow{A M} \cdot \overrightarrow{G M}=9.75-16-25=-31.25$ | M1 | Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ on AM and GM |
|  | $\overrightarrow{A M} \cdot \overrightarrow{G M}=\sqrt{ }\left(1.5^{2}+4^{2}+5^{2}\right) \times \sqrt{ }\left(6.5^{2}+4^{2}+5^{2}\right) \cos G M A$ | M1 M1 | M1 for product of 2 modulii M1 all correctly connected |
|  | Equating $\rightarrow$ Angle $G M A=121^{\circ}$ | A1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 8(a) | $a r^{2}=48, a r^{3}=32, \mathrm{r}=2 / 3$ or $a=108$ | M1 | Solution of the 2 eqns to give $r$ (or $a$ ). A1 (both) |
|  | $\mathrm{r}=2 / 3$ and $a=108$ | A1 |  |
|  | $S \infty=\frac{108}{\frac{1}{3}}=324$ | A1 | FT Needs correct formula and $r$ between -1 and 1. |
|  |  | 3 |  |
| 8(b) | $\begin{aligned} & \text { Scheme A } a=2.50, d=0.16 \\ & \mathrm{~S}_{\mathrm{n}}=12(5+23 \times 0.16) \end{aligned}$ | M1 | Correct use of either AP $\mathrm{S}_{\mathrm{n}}$ formula. |
|  | $\mathrm{S}_{\mathrm{n}}=104$ tonnes. | A1 |  |
|  | Scheme B $a=2.50, r=1.06$ | B1 | Correct value of $r$ used in GP. |
|  | $=\frac{2.5\left(1.06^{24}-1\right)}{1.06-1}$ | M1 | Correct use of either $\mathrm{S}_{\mathrm{n}}$ formula. |
|  | $\mathrm{S}_{\mathrm{n}}=127$ tonnes. | A1 |  |
|  |  | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | ---: | ---: |
| $9(\mathrm{i})$ | $-1 \leqslant \mathrm{f}(x) \leqslant 5$ or $[-1,5]$ (may use y or f instead of $\mathrm{f}(\mathrm{x}))$ | B1 B1 | $-1<\mathrm{f}(x) \leqslant 5$ or $-1 \leqslant x \leqslant 5$ or $(-1,5)$ or $[5,-1]$ B1 only |
|  |  | $\mathbf{2}$ |  |



| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 9 (iii) | (greatest value of $p=$ ) $\pi$ | B1 |  |
|  |  | 1 |  |
| 9(iv) | $x=2-3 \cos x \rightarrow \cos x=1 / 3(2-x)$ | M1 | Attempt at $\cos x$ the subject. Use of $\cos ^{-1}$ |
|  | $g^{-1}(x)=\cos ^{-1} \frac{2-x}{3}(\text { may use ' } y=\prime)$ | A1 | Must be a function of x , |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 10(i) | $\text { integrating } \rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-5 x(+c)$ | B1 |  |
|  | $=0$ when $x=3$ | M1 | Uses the point to find $c$ after $\int=0$. |
|  | $c=6$ | A1 |  |
|  | integrating again $\rightarrow y=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+6 x \quad(+d)$ | B1 | FT Integration again FT if a numerical constant term is present. |
|  | use of ( 3,6 ) | M1 | Uses the point to find $d$ after $\int=0$. |
|  | $d=11 / 2$ | A1 |  |
|  |  | 6 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 10(ii) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-5 x+6=0 \rightarrow x=2$ | B1 |  |
|  |  | 1 |  |
| 10(iii) | $x=3, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=1$ and/or +ve Minimum. <br> $x=2, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}=-1$ and/or - ve Maximum | B1 | www |
|  | May use shape of ' $+x^{3}$, curve or change in sign of $\frac{d y}{d x}$ | B1 | www $\mathrm{SC}: x=3$, minimum, $x=2$, maximum, B 1 |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 11(i) | $3 \times-1 / 2 \times(1+4 x)^{-\frac{3}{2}}$ | B1 |  |
|  | $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \times-1 / 2 \times(1+4 x)^{-\frac{3}{2}} \times 4$ | B1 | Must have ' $\times 4$ ' |
|  | If $x=2, m=-\frac{2}{9}$, Perpendicular gradient $=\frac{9}{2}$ | M1 | Use of $m_{1} \cdot m_{2}=-1$ |
|  | Equation of normal is $y-1=\frac{9}{2}(x-2)$ | M1 | Correct use of line eqn (could use $\mathrm{y}=0$ here) |
|  | Put $y=0$ or on the line before $\rightarrow \frac{16}{9}$ | A1 | AG |
|  |  | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 11(ii) | $\text { Area under the curve }=\int_{0}^{2} \frac{3}{\sqrt{1+4 x}} \mathrm{~d} x=\frac{3 \sqrt{1+4 x}}{\frac{1}{2}} \div 4$ | B1 B1 | Correct without ' $\div 4$ '. For 2nd B1, $\div 4$ '. |
|  | Use of limits 0 to $2 \rightarrow 41 / 2-11 / 2$ | M1 | Use of correct limits in an integral. |
|  | 3 | A1 |  |
|  | Area of the triangle $=1 / 2 \times 1 \times \frac{2}{9}=\frac{1}{9}$ or attempt to find $\int_{16 / 9}^{2}\left(\frac{9}{2} x-8\right) d x$ | M1 | Any correct method. |
|  | Shaded area $=3-\frac{1}{9}=2 \frac{8}{9}$ | A1 |  |
|  |  | 6 |  |

