May/June 2019

9709_s19_ms_11

Question	Answer	Marks	Guidance
1(i)	Ind term = $(2x)^3 \times \left(\frac{k}{x}\right)^3 \times {}_6C_3$	B2,1,0	Term must be isolated
	$= 540 \rightarrow k = 1\frac{1}{2}$	B 1	
		3	
1(ii)	Term, in x^2 is $(2x)^4 \times \left(\frac{k}{x}\right)^2 \times {}_6C_2$	B1	All correct – even if <i>k</i> incorrect.
	$15 \times 16 \times k^2 = 540 \text{ (or } 540 x^2 \text{)}$	B 1	FT For $240k^2$ or $240k^2x^2$
		2	

May/June 2019

9709_s19_ms_11

Question	Answer	Marks	Guidance
2(i)	Eliminates x or $y \to y^2 - 4y + c - 3 = 0$ or $x^2 + (2c - 16)x + c^2 - 48 = 0$	M1	Eliminates <i>x</i> or <i>y</i> completely to a quadratic
	Uses $b^2 = 4ac \rightarrow 4c - 28 = 0$	M1	Uses discriminant = 0. (c the only variable)
			Any valid method (may be seen in part (i))
	<i>c</i> = 7	A1	
	Alternative method for question 2(i)		
	$\frac{dy}{dx} = \frac{1}{2\sqrt{(x+3)}} = \frac{1}{4}$	M1	
	Solving	M1	
	<i>c</i> = 7	A1	
		3	
2(ii)	Uses $c = 7$, $y^2 - 4y + 4 = 0$	M1	Ignore (1,-2), c=-9
	(1, 2)	A1	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 11

Question	Answer	Marks	Guidance
3	Uses $A = \frac{1}{2}r^2\theta$	M1	Uses area formula.
	$\theta = \frac{2A}{r^2}$	A1	
	$P = r + r + r\theta$	B1	
	$P = 2r + \frac{2A}{r}$	A1	Correct simplified expression for <i>P</i> .
		4	

May/June 2019

9709 s19 ms 11

Question	Answer	Marks	Guidance
4(i)	Gradient of $AB = -\frac{1}{2} \rightarrow$ Gradient of $BC = 2$	M1	Use of $m_1.m_2 = -1$ for correct lines
	Forms equation in $h \frac{3h-2}{h} = 2$	M1	Uses normal line equation or gradients for <i>h</i> .
	h = 2	A1	
	Alternative method for question 4(i)		
	Vectors AB.BC=0	M1	Use of vectors AB and BC
	Solving	M1	
	<i>h</i> = 2	A1	
	Alternative method for question 4(i)	·	
	Use of Pythagoras to find 3 lengths	M1	
	Solving	M1	
	h = 2	A1	
		3	
4(ii)	y coordinate of D is 6, $(3 \times \text{'their' h})$ $\frac{6-0}{x-4} = 2 \rightarrow x = 7 \rightarrow D(7, 6)$	B1	FT
	Vectors: AD.AB=0	M1 A1	Must use $y = 6$ Realises the <i>y</i> values of <i>C</i> and <i>D</i> are equal. Uses gradient or line equation to find <i>x</i> .
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

May/June 2019

	9709	s19	ms	11
--	------	-----	----	----

Question	Answer	Marks	Guidance
5(i)	$-2(x-3)^{2}+15 \ (a=-3, b=15)$	B1 B1	Or seen as $a = -3$, $b = 15$ B1 for each value
		2	
5(ii)	$(f(x) \leq) 15$	B1	FT for (\leq) their "b" Don't accept (3,15) alone
		1	
5(iii)	$gf(x) = 2(-2x^2 + 12x - 3) + 5 = -4x^2 + 24x - 6 + 5$	B1	
	$gf(x) + 1 = 0 \to -4x^2 + 24x = 0$	M1	
	x = 0 or 6	A1	Forms and attempts to solve a quadratic Both answers given.
		3	

Question	Answer	Marks	Guidance
6(i)	LHS = $\left(\frac{1}{c} - \frac{s}{c}\right)^2 = \frac{(1-s)(1-s)}{c^2} = \frac{(1-s)(1-s)}{1-s^2}$	B1	Expresses tan in terms of sin and cos
		B1	correctly $1-s^2$ as the denominator
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}$	M1	Factors and correct cancelling www
	$\frac{1-\sin x}{1+\sin x} \qquad \qquad \text{AG}$	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2019

9709 s19 ms 11

Question	Answer	Marks	Guidance
6(ii)	Uses part (i) to obtain $\frac{1-\sin 2x}{1+\sin 2x} = \frac{1}{3} \rightarrow \sin 2x = \frac{1}{2}$	M1	Realises use of $2x$ and makes $\sin 2x$ the subject
	$x = \frac{\pi}{12}$	A1	Allow decimal (0.262)
	(or) $x = \frac{5\pi}{12}$	A1	FT for $\frac{1}{2}\pi$ – 1st answer. Allow decimal (1.31) $\frac{\pi}{12}$ and $\frac{5\pi}{12}$ only, and no others in range. SC sin $x=\frac{1}{2} \rightarrow \frac{\pi}{6} \frac{5\pi}{6}$ B1
		3	

Question	Answer	Marks	Guidance
7(i)	$\overline{AM} = 1.5\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ $\overline{GM} = 6.5\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$	B3,2,1	Loses 1 mark for each error.
		3	
7(ii)	\overrightarrow{AM} . $\overrightarrow{GM} = 9.75 - 16 - 25 = -31.25$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$ on AM and GM
	\overrightarrow{AM} . $\overrightarrow{GM} = \sqrt{(1.5^2 + 4^2 + 5^2)} \times \sqrt{(6.5^2 + 4^2 + 5^2)} \cos GMA$	M1 M1	M1 for product of 2 modulii M1 all correctly connected
	Equating \rightarrow Angle <i>GMA</i> = 121°	A1	
		4	

May/June 2019

9709	s19	ms	11

Question	Answer	Marks	Guidance
8(a)	$ar^2 = 48, ar^3 = 32, r = \frac{2}{3}$ or $a = 108$	M1	Solution of the 2 eqns to give <i>r</i> (or <i>a</i>). A1 (both)
	$r = \frac{2}{3}$ and $a = 108$	A1	
	$S\infty = \frac{108}{\frac{1}{3}} = 324$	A1	FT Needs correct formula and r between -1 and 1 .
		3	
8(b)	Scheme A $a = 2.50, d = 0.16$ S _n = 12(5 + 23×0.16)	M1	Correct use of either AP S_n formula.
	$S_n = 104$ tonnes.	A1	
	Scheme B $a = 2.50, r = 1.06$	B1	Correct value of <i>r</i> used in GP.
	$=\frac{2.5(1.06^{24}-1)}{1.06-1}$	M1	Correct use of either S _n formula.
	$S_n = 127$ tonnes.	A1	
		5	

Question	Answer	Marks	Guidance
9(i)	$-1 \le f(x) \le 5$ or $[-1, 5]$ (may use y or f instead of $f(x)$)	B1 B1	$-1 \le f(x) \le 5$ or $-1 \le x \le 5$ or $(-1,5)$ or $[5,-1]$ B1 only
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

	IODEIOTED		<u>9709_819_08_11</u>
Question	Answer	Marks	Guidance
9(ii)		*B1	Start and end at –ve <i>y</i> , symmetrical, centre +ve.
	$g(x) = 2 - 3\cos x \text{ for } 0 \le x \le p$	DB1	Shape all ok. Curves not lines. One cycle $[0,2\pi]$ Flattens at each end.
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(iii)	(greatest value of $p =$) π	B1	
		1	
9(iv)	$x = 2 - 3\cos x \rightarrow \cos x = \frac{1}{3}(2 - x)$	M1	Attempt at $\cos x$ the subject. Use of \cos^{-1}
	$g^{-1}(x) = \cos^{-1}\frac{2-x}{3}$ (may use 'y =')	A1	Must be a function of x,
		2	

Question	Answer	Marks	Guidance
10(i)	integrating $\rightarrow \frac{dy}{dx} = x^2 - 5x (+c)$	B1	
	= 0 when $x = 3$	M1	Uses the point to find <i>c</i> after $\int = 0$.
	<i>c</i> = 6	A1	
	integrating again $\rightarrow y = \frac{x^3}{3} - \frac{5x^2}{2} + 6x (+d)$	B1	FT Integration again FT if a numerical constant term is present.
	use of (3, 6)	M1	Uses the point to find <i>d</i> after $\int = 0$.
	$d = 1\frac{1}{2}$	A1	
		6	

9709/11

Question	Answer	Marks	Guidance
10(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 5x + 6 = 0 \longrightarrow x = 2$	B1	
		1	
10(iii)	$x = 3$, $\frac{d^2y}{dx^2} = 1$ and/or +ve Minimum. $x = 2$, $\frac{d^2y}{dx^2} = -1$ and/or -ve Maximum	B1	WWW
	May use shape of ' $+x^3$ ' curve or change in sign of $\frac{dy}{dx}$	B1	www SC: $x = 3$, minimum, $x = 2$, maximum, B1
		2	

Question	Answer	Marks	Guidance
11(i)	$3 \times -\frac{1}{2} \times (1+4x)^{-\frac{3}{2}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \times -\frac{1}{2} \times (1+4x)^{-\frac{3}{2}} \times 4$	B1	Must have '× 4'
	If $x = 2$, $m = -\frac{2}{9}$, Perpendicular gradient $= \frac{9}{2}$	M1	Use of $m_1.m_2 = -1$
	Equation of normal is $y-1=\frac{9}{2}(x-2)$	M1	Correct use of line eqn (could use y=0 here)
	Put $y = 0$ or on the line before $\rightarrow \frac{16}{9}$	A1	AG
		5	

May/June 2019

9709_s19_ms_11

Question	Answer	Marks	Guidance
11(ii)	Area under the curve = $\int_{0}^{2} \frac{3}{\sqrt{1+4x}} dx = \frac{3\sqrt{1+4x}}{\frac{1}{2}} \div 4$	B1 B1	Correct without '÷4'. For 2nd B1, ÷4'.
	Use of limits 0 to $2 \rightarrow 4\frac{1}{2} - 1\frac{1}{2}$	M1	Use of correct limits in an integral.
	3	A1	
	Area of the triangle = $\frac{1}{2} \times 1 \times \frac{2}{9} = \frac{1}{9}$ or attempt to find $\int_{16/9}^{2} \left(\frac{9}{2}x - 8\right) dx$	M1	Any correct method.
	Shaded area = $3 - \frac{1}{9} = 2\frac{8}{9}$	A1	
		6	