Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(i)	Po(2.25)	B1	Stated or implied
	$e^{-2.25}(1+2.25+\frac{2.25^2}{2})$	M1	Allow any λ , one end error
	= 0.609 (3 sf)	A1	SC B1 Use of B(75,0.03) leading to 0.608
		3	
1(ii)	μ = 2.25, which is less than 5; n large	B1	Allow np<5 and n large or p<0.1 and n>50, no contradictions
		1	

Question	Answer	Marks	Guidance
2(i)	213, 165, 73, 196 Allow 073	B1	For 3-digit no, < 265, consisting of three consecutive integers from given digits, backwards or forward. (73 or 073 counts as a 3-digit no.)
		B1	For another three such. Other answers may be valid. If other method used, method must be clear
		2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

9709_s18_ms_73

Question	Answer	Marks	Guidance
2(ii)	$\frac{510}{25} = \frac{102}{5}$ or 20.4	B1	
	$\frac{25}{24} \left[\frac{13225}{25} - \left(\frac{102}{5} \right)^2 \right]$	M1	$\frac{1}{24} \left(13225 - \frac{510^2}{25} \right)$
	118 (3 sf) or $\frac{2821}{24}$	A1	
		3	
2(iii)	(Average) weekly earnings of all students in Amy's year	B1	Not 'All students in Amy's year'
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3	$\frac{\frac{8}{64} \times (1 - \frac{8}{64})}{64} \qquad (= \frac{7}{4096} \text{ or } 0.00171)$	M1	OE, e.g. $\frac{\frac{1}{8} \times \frac{7}{8}}{64}$
	$2 \times z \sqrt{"\frac{7}{4096}"} = 0.130$	M1	Correct equation using their variance
	z = 1.572	A1	
		M1	$2\phi(\text{their } z) - 1$
	$\alpha = 88$	A1	САО
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

9709 s18 ms 73

Question	Answer	Marks	Guidance
4(i)	No of males leaving (to do eng) each yr has const mean or	B1	One of these or any equiv statement in context.
	Males leave (to do eng) indep of other males leaving (to do eng) or		
	Males leave (to do eng) at random		
		1	
4(ii)	$\lambda = 3.9$	B1	
	$1 - e^{-3.9} (1 + 3.9 + \frac{3.9^2}{2!} + \frac{3.9^3}{3!})$	M1	Any λ . Allow one end error or extra term.
	0.546753 or 0.547 (3 sf)	A1	
		3	
4(iii)	$P(F = 0 \text{ and } M > 3) = e^{-0.8} \times \left[1 - e^{-3.1} \left(1 + 3.1 + \frac{3.1^2}{2!} + \frac{3.1^3}{3!} \right) \right]$ (= 0.16857)	M1	Attempt $P(F = 0) \times P(M > 3)$ allow one end error for $P(M > 3)$ provided $\lambda = 3.1$
	$\frac{P(F=0 \text{ and } M>3)}{P(M+F>3)}$ $\frac{"0.16857"}{"0.54675"}$	M1	Attempted, allow any probability/their (ii) provided the answer is <1
	= 0.308 (3 sf)	A1	
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	Assume (pop) sd same (0.3) H ₀ : Pop mean = 2.4	B1	
	H ₁ : Pop mean $\neq 2.4$	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{2.3 - 2.4}{\frac{0.3}{\sqrt{30}}}$	M1	Must have $\sqrt{30}$, Critical region approach (2.293, 2.507) or (2.193, 2.407)
	=±1.826	A1	
	$\operatorname{comp} z = \pm 1.96$	M1	Valid comparison (e.g. compare 0.034 with 0.025)
	No evidence that mean time changed	A1f	In context, allow accept H_0 if correctly defined, no contradictions.
			One-tail test can score B1, B0, M1, A1, M1, A0 Max 4/6
		6	
5(ii)(a)	0.05	B1	
		1	
5(ii)(b)	Concluding mean time has not changed when it has.	B1	OE, must have e.g. conclude/accept SR Allow mean has decreased if a one tailed test in Part (i)
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

9709_s18_ms_73

Question	Ans	wer Marks	Guidance
6(i)	E(T) = $4.5 + 2.3$ (= 6.8) Var(T) = $1.1^2 + 0.7^2$ (= 1.7)	M1	Both methods seen or implied
	$\frac{8.5 - "6.8"}{\sqrt{"1.7"}} \qquad (= 1.304)$	A) M1	Correct stand'n using their μ and σ^2 must be a combination of the two variables
	φ ("1.304")	M1	Area consistent with their working
	= 0.904 (3 sf)	A1	
		4	
6(ii)	$E(D) = 4.5 - 2 \times 2.3$ or -0.1	M1	
	$Var(D) = 1.1^2 + 2^2 \times 0.7^2$ or 3.17	M1	Both can seen or implied
	$\frac{0 - (-0.1')}{\sqrt{3.17'}} \qquad (= 0.056)$)) M1	Correct stand'n using their μ and σ^2 must be a Combination of the two variables
	1 – φ("0.056")	M1	Area consistent with their working
	= 0.478 (3 sf)	A1	
		5	

9709/73

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

9709	s18	ms	73

Question	Answer	Marks	Guidance
7(i)	$k \int_{1}^{2} \left(\frac{1}{x^{2}} + \frac{1}{x^{3}}\right) dx = 1$	M1	Attempt integ $f(x) \& = 1$; ignore limits
	$k\left[-\frac{1}{x} - \frac{1}{2x^2}\right]_1^2 = 1$	A1	Correct integral & limits & '= 1'
	$k\left[-\frac{1}{2}-\frac{1}{8}+1+\frac{1}{2}\right] = 1$ $k = \frac{8}{7} \mathbf{AG}$	A1	Sufficient working must be shown, no errors seen
		3	
7(ii)	$\frac{8}{7} \int_{1}^{2} \left(\frac{1}{x} + \frac{1}{x^{2}}\right) dx$	M1	Attempt integ $xf(x)$, ignore limits
	$=\frac{8}{7}\left[\ln x - \frac{1}{x}\right]_{1}^{2}$	A1	Correct integral & limits, condone missing k
	$=\frac{8}{7}(\ln 2 + \frac{1}{2})$ or 1.36 (3 sf)	A1	
		3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(iii)	$\frac{8}{7} \int_{1}^{1.5} \left(\frac{1}{x^2} + \frac{1}{x^3}\right) dx$	M1	Attempt integration $f(x)$ between 1 and 1.5 or between 1.5 and 2
	$=\frac{8}{7}\left[-\frac{1}{x}-\frac{1}{2x^2}\right]_{1}^{1.5}$		
	$=\frac{44}{63}$ or 0.698	A1	Or $\frac{19}{63}$ or 0.302
	$\left(\frac{44}{63}, \left(1 - \frac{44}{63}\right)^2\right)$	M1	FT their $\frac{44}{63}$
	× 3	M1	Independent provided answer is <1
	= 0.191	A1	
		5	