Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

9709 s18 ms 72

Question	Answer	Marks	Guidance
1	$\lambda = 4.4$	B1	
	$P(X < 4) = e^{-4.4} (1 + 4.4 + \frac{4.4^2}{2} + \frac{4.4^3}{3!})$	M1	Allow any λ allow one end error
	= 0.359	A1	
		3	

Question	Answer	Marks	Guidance
2	A: N(6, 4.8)	B1 B1	B1 for N(6,) for either A or B. B1 for 4.8 (or 2.19^2) (or SD=2.19)
	B: N(6, 2.4)	B1	B1 For 2.4 (or 1.55 ²) (or SD=1.55) (SR 3/3 but error seen withhold B1 so 2/3 scored)
		3	

Question	Answer	Marks	Guidance
3(i)	$52 \pm z \times \frac{6.5}{\sqrt{15}}$	M1	Expression of the correct form. Any z
	<i>z</i> = 1.96	B1	Seen or used
	48.7 to 55.3 (3 sf)	A1	Must be an interval
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
3(ii)	Narrower because more information or because $\frac{\sigma}{\sqrt{n}}$ smaller	B1	oe Accept 'sample size is larger' 'more employees' 'width inversely proportional to sq root of n' 'if n increases width decreases' '95% CI is 49.7 to 54.3' or similar. No contradictions
		1	

Question	Answer	Marks	Guidance
4(i)	$Est(\mu) = 495.9$	B1	Accept 496
	$\operatorname{Est}(\sigma^2) = \frac{10}{9} \left(\frac{2459283}{10} - "495.9"^2 \right)$	M1	Attempt Σx^2 and subst in correct formula (1/9("2459283" – "4959" ² /10)). May be implied by correct answer
	= 12.8 (3 sf) or 383/30	A1	(Note: Biased var "11.49" scores M0 A0)
		3	
4(ii)	$H_{0}: \mu = 505H_{1}: \mu < 505\frac{75660-505}{150}3.6 \div \sqrt{150}$	B1	Allow 'Pop mean' but not just 'mean'
	= -2.04	M1	Correct stand'n; must have $\sqrt{150}$. No sd/var mixes. Condone sample SD (3.58/3.39) Accept standardisation of totals ((75660-75750)/44.091) Accept CV method
		A1	Accept +2.04 (Note: if valid area comparison done 0.0207/0.0206 or 0.979 needed for A1)
	$\operatorname{comp} z = -2.054$	M1	Valid comparison of z's or area (0.0207/6>0.02; 0.979(3)<0.98)
	No evidence (at 2%) that machine pkts mean mass < 505	A1ft	oe No contradictions. SC Two tail test can score B0 M1 A1 M1 for comparison with 2.326 A0 (max 3/5)
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
4(iii)	Large sample, so sample mean approx normally distr'd	B1	Allow just 'Sample is large' or ' <i>n</i> is large' n>30
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{2} \times a \times b = 1$	M1	Attempt Δ area = 1 or $\int (b-bx/a) dx = 1$ with correct limits
	$b = \frac{2}{a}$	A1	
		2	
5(ii)	$\operatorname{grad} = -\frac{2}{a^2}$ or $-\frac{b}{a}$	B1	allow without '-' sign (could be implied or seen in (i))
	$y - \left(\frac{2}{a}\right) = \operatorname{grad} \times x \text{ or } y = \operatorname{grad} \times (x - a)$	M1	correct use of $y = mx + c$ or $y - y_1 = m(x - x_1)$ with (0,b) or (a,0) including attempt at substitution of their b
	$y - (\frac{2}{a}) = -\frac{2}{a^2} x \text{ or } y = -\frac{2}{a^2} (x - a)$ and $y = \frac{2}{a} - \frac{2}{a^2} x$ AG	A1	No errors seen
		3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
5(iii)	$\int_{0}^{a} (\frac{2}{a}x - \frac{2}{a^{2}}x^{2}) \mathrm{d}x$	M1	Attempt int $xf(x)$ ignore limits
	$= \left[\frac{1}{a}x^2 - \frac{2}{3a^2}x^3\right]_{0}^{a}$	A1	Correct integration ignore limits
	$a - \frac{2}{3}a = 0.5$	M1	Sub correct limits into their integral and $= 0.5$
	<i>a</i> = 1.5	A1	
		4	

Question	Answer	Marks	Guidance
6(i)	Accidents occur independently or randomly	B1	In context. Allow 'singly'.
		1	
6(ii)	$e^{-2.5} \times \frac{2.54}{4!}$	M1	Poisson P(4), allow any λ
	= 0.134 (3 sfs)	A1	
		2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
6(iii)	$\lambda = \frac{25}{12}$ or 2.08(333)	B1	
	$1 - e^{-\frac{25}{12}}\left(1 + \frac{25}{12} + \frac{\frac{25^2}{12}}{\frac{21}{2!}} + \frac{\frac{25^3}{12}}{\frac{12}{3!}}\right)$	M1	1 – Poisson P(0, 1, 2, 3), allow any λ allow one end error
	= 0.158 (3 sfs)	A1	As final answer
		3	
6(iv)	$N(\frac{1825}{84}, \frac{1825}{84})$ or $N(21.7(26), 21.7(26))$	B1	Stated or implied
	$\frac{\frac{29.5 - 1825}{84}}{\sqrt{\frac{1825}{84}}}$	M1	Allow with wrong or no cc with their mean/sd
	Ф("1.668")	M1	Correct area consistent with their working
	= 0.952 (3 sfs)	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
7(i)	$ H_0: P(10) = 0.1 H_1: P(10) > 0.1 $	B1	Both. Allow 'p' for P(10)
	B(9,0.1) P($X \ge 3$) = 1 - (0.9 ⁹ + 9×0.9 ⁸ × 0.1 + ⁹ C ₂ × 0.9 ⁷ × 0.1 ²)	M1	Allow one extra term in bracket
	= 0.05297 or 0.053(0)	A1	
	comp 0.01	M1	Valid comparison. (comparison with 0.99 can recover previous M1 A1 for 0.9470)
	No evidence (at 1% level) to reject H_0 Claim not justified	A1ft	No contradictions
		5	
7(ii)	H ₀ not rejected oe	B1	
		1	
7(iii)	P(X ≥ 4) = "0.05297" - ${}^{9}C_{3} \times 0.9^{6} \times 0.1^{3}$	M1	or $1-(0.9^9 + 9 \times 0.9^8 \times 0.1 + {}^9C_2 \times 0.9^7 \times 0.1^2 + {}^9C_3 \times 0.9^6 \times 0.1^3)$
	= 0.00833	A1	Note: 0.05297 and 0.00833 both needed in (i) or (iii) to justify CV
	Hence crit value is 4	B1	Allow without working. Or in (i) May be implied by attempt at $P(X < 4)$ below
	B(9,0.5) P($X < 4$)	M1	stated or implied
	$= 0.5^9 + 9 \times 0.5^8 \times 0.5 + {}^9C_2 \times 0.5^7 \times 0.5^2 + {}^9C_3 \times 0.5^6 \times 0.5^3$	M1	Attempt $P(X < 4)$ with $p = 0.5$
	P(Type II) = 0.254 (3 sf)	A1	
		6	