Question	Answer	Marks	Guidance
1	$\lambda=4.4$	$\mathbf{B 1}$	
	$\mathrm{P}(X<4)=\mathrm{e}^{-4.4}\left(1+4.4+\frac{4.4^{2}}{2}+\frac{4.4^{3}}{3!}\right)$	$\mathbf{M 1}$	Allow any λ allow one end error
	$=0.359$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	A: $\mathrm{N}(6,4.8)$	B1 B1	B1 for $\mathrm{N}(6, .$.$) for either \mathrm{A}$ or B. B1 for 4.8 (or 2.19^{2}) (or $\mathrm{SD}=2.19$)
	B: $\mathrm{N}(6,2.4)$	B1	B1 For 2.4 (or 1.55^{2}) (or $\mathrm{SD}=1.55$) (SR $3 / 3$ but error seen withhold B1 so $2 / 3$ scored)
		3	

Question	Answer	Marks	Guidance
3 (i)	$52 \pm z \times \frac{6.5}{\sqrt{15}}$	M1	Expression of the correct form. Any z
	$z=1.96$	B1	Seen or used
	48.7 to $55.3(3 \mathrm{sf})$	A1	Must be an interval
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3 (ii)	Narrower because more information or because $\frac{\sigma}{\sqrt{n}}$ smaller	$\mathbf{B 1}$	oe Accept 'sample size is larger' 'more employees' 'width inversely proportional to sq root of n 'if n increases width decreases' '95\% CI is 49.7 to 54.3' or similar. No contradictions
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
4(i)	$\operatorname{Est}(\mu)=495.9$	B1	Accept 496
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{10}{9}\left(\frac{2459283}{10}-" 495.9{ }^{2}\right)$	M1	Attempt Σx^{2} and subst in correct formula (1/9("2459283" - " 4959 " $\left.2 / 10\right)$). May be implied by correct answer
	$=12.8(3 \mathrm{sf})$ or $383 / 30$	A1	(Note: Biased var " 11.49 " scores M0 A0)
		3	
4(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=505 \\ & \mathrm{H}_{1}: \mu<505 \\ & \frac{75660-505}{} \\ & \frac{150}{3.6 \div \sqrt{150}} \end{aligned}$	B1	Allow 'Pop mean' but not just 'mean'
	$=-2.04$	M1	Correct stand'n; must have $\sqrt{ } 150$. No sd/var mixes. Condone sample SD (3.58/3.39) Accept standardisation of totals ((75660-75750)/44.091) Accept CV method
		A1	Accept +2.04 (Note: if valid area comparison done $0.0207 / 0.0206$ or 0.979 needed for A1)
	comp $z=-2.054$	M1	Valid comparison of z's or area (0.0207/6>0.02; $0.979(3)<0.98)$
	No evidence (at 2\%) that machine pkts mean mass <505	A1ft	oe No contradictions. SC Two tail test can score B0 M1 A1 M1 for comparison with 2.326 A0 (max 3/5)
		5	

Question	Answer	Marks	Guidance
4 (iii)	Large sample, so sample mean approx normally distr'd	B1	Allow just 'Sample is large' or ' n is large' $n>30$
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{2} \times a \times b=1$	M1	Attempt Δ area $=1$ or $\int(b-b x / a) \mathrm{d} x=1$ with correct limits
	$b=\frac{2}{a}$	A1	
		2	
5(ii)	$\operatorname{grad}=-\frac{2}{a^{2}}$ or $-\frac{b}{a}$	B1	allow without '-' sign (could be implied or seen in (i))
	$y-\left(\frac{2}{a}\right)=\operatorname{grad} \times x$ or $y=\operatorname{grad} \times(x-a)$	M1	correct use of $y=m x+c$ or $y-y_{1}=m\left(x-x_{1}\right)$ with $(0, \mathrm{~b})$ or $(\mathrm{a}, 0)$ including attempt at substitution of their b
	$\begin{aligned} & y-\left(\frac{2}{a}\right)=-\frac{2}{a^{2}} x \text { or } y=-\frac{2}{a^{2}}(x-a) \\ & \text { and } y=\frac{2}{a}-\frac{2}{a^{2}} x \quad \text { AG } \end{aligned}$	A1	No errors seen
		3	

Question	Answer	Marks	Guidance
5(iii)	$\int_{0}^{a}\left(\frac{2}{a} x-\frac{2}{a^{2}} x^{2}\right) \mathrm{d} x$	M1	Attempt int $x \mathrm{f}(x)$ ignore limits
	$=\left[\frac{1}{a} x^{2}-\frac{2}{3 a^{2}} x^{3}\right]_{0}^{a}$	A1	Correct integration ignore limits
	$a-\frac{2}{3} a=0.5$	M1	Sub correct limits into their integral and $=0.5$
	$a=1.5$	A1	
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	Accidents occur independently or randomly	$\mathbf{B 1}$	In context. Allow 'singly'.
		$\mathbf{1}$	
	$\mathrm{e}^{-2.5} \times \frac{2.54}{4!}$	$\mathbf{M 1}$	Poisson P(4), allow any λ
	$=0.134(3 \mathrm{sfs})$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(iii)	$\lambda=\frac{25}{12}$ or 2.08(333)	B1	
	$1-\mathrm{e}^{-\frac{25}{12}}\left(1+\frac{25}{12}+\frac{25^{2}}{2!}+\frac{25^{3}}{3!}\right)$	M1	1 - Poisson $\mathrm{P}(0,1,2,3)$, allow any λ allow one end error
	$=0.158(3 \mathrm{sfs})$	A1	As final answer
		3	
6(iv)	$\mathrm{N}\left(\frac{1825}{84}, \frac{1825}{84}\right)$ or $\mathrm{N}(21.7(26), 21.7(26))$	B1	Stated or implied
	$\frac{29.5-\frac{1825}{84}}{\sqrt{\frac{1825}{84}}}$	M1	Allow with wrong or no cc with their mean/sd
	$\Phi(" 1.668$ ")	M1	Correct area consistent with their working
	$=0.952(3 \mathrm{sfs})$	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(10)=0.1 \\ & \mathrm{H}_{1}: \mathrm{P}(10)>0.1 \end{aligned}$	B1	Both. Allow ' p ' for $\mathrm{P}(10)$
	$\begin{aligned} & \mathrm{B}(9,0.1) \\ & \mathrm{P}(X \geqslant 3)= \\ & 1-\left(0.9^{9}+9 \times 0.9^{8} \times 0.1+{ }^{9} \mathrm{C}_{2} \times 0.9^{7} \times\right. \\ & \left.0.1^{2}\right) \end{aligned}$	M1	Allow one extra term in bracket
	$=0.05297 \ldots$ or 0.053(0)	A1	
	comp 0.01	M1	Valid comparison. (comparison with 0.99 can recover previous M1 A1 for 0.9470)
	No evidence (at 1% level) to reject H_{0} Claim not justified	A1ft	No contradictions
		5	
7(ii)	H_{0} not rejected oe	B1	
		1	
7(iii)	$\begin{aligned} & \mathrm{P}(X \geqslant 4) \\ & =" 0.05297 "-{ }^{9} \mathrm{C}_{3} \times 0.9^{6} \times 0.1^{3} \end{aligned}$	M1	or $1-\left(0.9^{9}+9 \times 0.9^{8} \times 0.1+{ }^{9} \mathrm{C}_{2} \times 0.9^{7} \times 0.1^{2}+{ }^{9} \mathrm{C}_{3} \times 0.9^{6} \times 0.1^{3}\right)$
	$=0.00833$	A1	Note: 0.05297 and 0.00833 both needed in (i) or (iii) to justify CV
	Hence crit value is 4	B1	Allow without working. Or in (i) May be implied by attempt at $\mathrm{P}(X<4)$ below
	$\begin{aligned} & \mathrm{B}(9,0.5) \\ & \mathrm{P}(X<4) \end{aligned}$	M1	stated or implied
	$\begin{aligned} & =0.5^{9}+9 \times 0.5^{8} \times 0.5+{ }^{9} \mathrm{C}_{2} \times 0.5^{7} \times \\ & 0.5^{2}+{ }^{9} \mathrm{C}_{3} \times 0.5^{6} \times 0.5^{3} \end{aligned}$	M1	Attempt $\mathrm{P}(X<4)$ with $p=0.5$
	$\mathrm{P}($ Type II) $=0.254(3 \mathrm{sf})$	A1	
		6	

