Question	Answer	Marks	Guidance
1	est $(\mu)(=153.2 \div 75)=2.04(3 \mathrm{sf})$	B1	
	est $\left(\sigma^{2}\right)=\frac{75}{74}\left(\frac{340.24}{75}-" 2.04267{ }^{\prime 2}\right) \mathrm{oe}$	M1	
	$=0.369(3 \mathrm{sf})$	A1	Accept 0.368
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$\frac{20}{100} \pm z \times \sqrt{\frac{0.2 \times(1-0.2)}{100}}$	M1	Any z
	$z=1.881$ or 1.882	B1	
	$=0.125$ to 0.275	A1	
		$\mathbf{3}$	
	$\frac{1}{6}$ is within this range No evidence of bias concerning 2	B1ft	Both statements needed
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3	$\mathrm{~N}(153,153)$	B1	Seen or implied
	$\frac{139.5-153}{\sqrt{" 153^{\prime}}} \quad(=-1.091)$	M1	Allow with wrong or no cc
	$\phi("-1.091 ")=1-\phi(" 1.091 ")$	M1	For area consistent with their working
	$=0.138(3$ sf $)$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	mean $=155.1$	B1	
	var $=1.5^{2} \times 10.2 \quad(=22.95)$ sd $=\sqrt{ } 22.95^{\prime \prime}$	M1	or $1.5 \times \sqrt{ } 10.2$
	$=4.79$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	$\begin{aligned} & \text { mean }=103.4+" 155.1 "(=258.5) \\ & \text { var }=10.2+" 22.95 "(=33.15) \end{aligned}$	B1 ft	Both. ft their 155.1 and 22.95. Accept sd.
	$\frac{250-" 258.5 "}{\sqrt{" 33.15 "}} \quad(=-1.476)$	M1	Standardising - no sd/var mix. Their mean/sd must be from an attempt at combination
	$1-\phi(-1.476)=\phi(1.476)$	M1	For area consistent with their working
	$=0.930$ (3 sf)	A1	Allow 0.93
		4	

Question	Answer	Marks	Guidance
5(i)	$\frac{14-14.2}{\frac{3.1}{\sqrt{50}}} \quad(=-0.456)$	M1	For stand'n; must have $\sqrt{ } 50$
	$1-\Phi\left({ }^{\prime} 0.456\right.$ ")	M1	for area consistent with their working
	$=0.324$ (3 sfs)	A1	
		3	
5(ii)	No because n large	B1	Accept $\mathrm{n}>30$
		1	
5(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=14.2 \\ & \mathrm{H}_{1}: \mu<14.2 \end{aligned}$	B1	or 'pop mean', but not just 'mean'
	$\frac{13.5-14.2}{\frac{3.1}{\sqrt{100}}}$	M1	For stand'n; must have $\sqrt{ } 100$
	$=-2.258$	A1	
	comp -2.054 (or -2.055)	M1	Valid comparison of z values or areas ($0.0119<0.02$)
	There is evidence (at 2% level) that mean mass in this area < 14.2	A1ft	Ft their z. Correct conclusion no contradictions
		5	

Question	Answer	Marks	Guidance
6(i)	$\int_{5}^{10} \frac{k}{x^{2}} \mathrm{~d} x=1$	M1	Attempt integration $\mathrm{f}(x)$ and ' $=1$ '; ignore limits
	$\begin{aligned} & {\left[-\frac{k}{x}\right]_{5}^{10}=1 \mathrm{oe}} \\ & \left(\frac{k}{5}-\frac{k}{10}=1\right) \end{aligned}$	A1	Correct integration and limits and ' $=1$ '
	$k=10 \mathbf{A G}$	A1	No errors seen
		3	
6(ii)	$\begin{aligned} & 10 \int_{5}^{10} \frac{1}{x} \mathrm{~d} x \\ & 10[\ln x]_{5}^{10} \end{aligned}$	M1	Attempt integ $x \mathrm{f}(x)$; ignore limits. or $10(\ln 10-\ln 5)$
	$=10 \ln 2 \mathrm{AG}$	A1	No errors seen
		2	
6(iii)	$\begin{aligned} & 10 \int_{9}^{10} \frac{1}{x^{2}} \mathrm{~d} x \\ & \left(10\left[-\frac{1}{x}\right]_{9}^{10}\right) \end{aligned}$	M1	Attempt integ $\mathrm{f}(\mathrm{x})$ with correct limits
	$10\left[-\frac{1}{10}+\frac{1}{9}\right]$	A1	Substitute correct limits in correct integration
	$=\frac{1}{9}$ or 0.111 (3 sf)	A1	
		3	
6(iv)	$\begin{aligned} & \int_{5}^{a} \frac{k}{x^{2}} \mathrm{~d} x=0.6 \\ & 10\left[-\frac{1}{x}\right]_{5}^{a}=0.6 \end{aligned}$	M1	Attempt integration of $\mathrm{f}(x)$ with correct limits and $=0.6$
	$10\left[\frac{1}{5}-\frac{1}{a}\right]=0.6$	A1	Substitute correct limits in correct integration
	$a=\frac{50}{7}$ or $7.14(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	Po(1.0)	B1	Seen or implied
	$\mathrm{e}^{-1}\left(1+1+\frac{1^{2}}{2}\right)$	M1	Allow any λ. Allow one end error.
	$=0.920$ (3 sfs)	A1	
		3	
7(ii)	$\mathrm{P}(X>3)=1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2}+\frac{1.5^{3}}{3!}\right)$	M1	Allow any λ. Allow one end error
	$=0.0656$	A1	
		2	
7(iii)(a)	Incorrectly concluding that more absences than usual when there are not oe	B1	In context
		1	
7(iii)(b)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=1.5(\text { or } 0.3) \\ & \mathrm{H}_{1}: \lambda>1.5 \text { (or } 0.3 \text {) } \end{aligned}$	B1	Or μ Both
	$\begin{aligned} & \mathrm{P}(X>4)=" 0.0656 "-\mathrm{e}^{-1.5} \times \frac{1.5^{4}}{4!} \\ & =0.0186(3 \mathrm{sf}) \end{aligned}$	M1	or $1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.5}{2}+\frac{1.55^{3}}{3!}+\frac{1.54}{4!}\right)$
	$\mathrm{P}($ Type I$)=0.0186$ or 0.0185	A1ft	Ft their $\mathrm{P}(X>4)$ if less than 0.05
		3	
7(iii)(c)	$\mathrm{P}(X>3)=" 0.0656 "$	B1ft	Ft their (ii)
	$0.0656>0.05$	M1	
	No evidence of more than usual male absences	A1ft	Ft their $\mathrm{P}(\mathrm{X}>3)$. Correct conclusion. No contradictions.
		3	

