Question	Answer	Marks	Guidance
1	$est(\mu) (= 153.2 \div 75) = 2.04 (3 sf)$	B1	
	$\operatorname{est}(\sigma^2) = \frac{75}{74} \left(\frac{340.24}{75} - "2.04267"^2\right) \operatorname{oe}$	M1	
	= 0.369 (3 sf)	A1	Accept 0.368
		3	

Question	Answer	Marks	Guidance
2(i)	$\frac{20}{100} \pm z \times \sqrt{\frac{0.2 \times (1-0.2)}{100}}$	M1	Any z
	<i>z</i> = 1.881 or 1.882	B1	
	= 0.125 to 0.275	A1	
		3	
2(ii)	$\frac{1}{6}$ is within this range No evidence of bias concerning 2	B1ft	Both statements needed
		1	

Question	Answer	Marks	Guidance
3	N(153, 153)	B1	Seen or implied
	$\frac{139.5-153}{\sqrt{1153^{11}}} \qquad (=-1.091)$	M1	Allow with wrong or no cc
	$\phi("-1.091") = 1 - \phi("1.091")$	M1	For area consistent with their working
	= 0.138 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	mean= 155.1	B1	
	var = $1.5^2 \times 10.2$ (= 22.95) sd = $\sqrt{22.95}$	M1	or $1.5 \times \sqrt{10.2}$
	= 4.79	A1	
		3	

Question	Answer	Marks	Guidance
4(ii)	mean = 103.4 + "155.1" (= 258.5) var = 10.2 + "22.95" (=33.15)	B1ft	Both. ft their 155.1 and 22.95. Accept sd.
	$\frac{250-"258.5"}{\sqrt{"33.15"}} \qquad (=-1.476)$	M1	Standardising – no sd/var mix. Their mean/sd must be from an attempt at combination
	$1 - \phi(-1.476) = \phi(1.476)$	M1	For area consistent with their working
	= 0.930 (3 sf)	A1	Allow 0.93
		4	

Question	Answer	Marks	Guidance
5(i)	$\frac{14 - 14.2}{\frac{3.1}{\sqrt{50}}} \qquad (= -0.456)$	M1	For stand'n; must have $\sqrt{50}$
	1 – Φ("0.456")	M1	for area consistent with their working
	= 0.324 (3 sfs)	A1	
		3	
5(ii)	No because <i>n</i> large	B1	Accept $n > 30$
		1	
5(iii)	$H_0: \mu = 14.2$ $H_1: \mu < 14.2$	B1	or 'pop mean', but not just 'mean'
	$\frac{13.5 - 14.2}{\frac{3.1}{\sqrt{100}}}$	M1	For stand'n; must have $\sqrt{100}$
	= -2.258	A1	
	comp –2.054 (or –2.055)	M1	Valid comparison of z values or areas $(0.0119 < 0.02)$
	There is evidence (at 2% level) that mean mass in this area < 14.2	A1ft	Ft their z. Correct conclusion no contradictions
		5	

Question	Answer	Marks	Guidance
6(i)	$\int_{5}^{10} \frac{k}{x^2} \mathrm{d}x = 1$	M1	Attempt integration $f(x)$ and '= 1'; ignore limits
	$\left[-\frac{k}{x}\right]_{5}^{10} = 1 \text{ oe}$	A1	Correct integration and limits and '= 1'
	$\left(\frac{k}{5} - \frac{k}{10} = 1\right)$		
	k = 10 AG	A1	No errors seen
		3	
6(ii)	$10\int_{5}^{10}\frac{1}{x}\mathrm{d}x$	M1	Attempt integ $xf(x)$; ignore limits.
	$10[\ln x]_{5}^{10}$		or 10(ln 10 – ln 5)
	$= 10\ln 2 \mathbf{AG}$	A1	No errors seen
		2	
6(iii)	$10\int_{9}^{10}\frac{1}{x^{2}}\mathrm{d}x$	M1	Attempt integ $f(x)$ with correct limits
	$(10\left[-\frac{1}{x}\right]_{9}^{10})$		
	$10\left[-\frac{1}{10}+\frac{1}{9}\right]$	A1	Substitute correct limits in correct integration
	$=\frac{1}{9}$ or 0.111 (3 sf)	A1	
		3	
6(iv)	$\int_5^a \frac{k}{x^2} \mathrm{d}x = 0.6$	M1	Attempt integration of $f(x)$ with correct limits and = 0.6
	$10\left[-\frac{1}{x}\right]_{5}^{a} = 0.6$		
	$10[\frac{1}{5} - \frac{1}{a}] = 0.6$	A1	Substitute correct limits in correct integration
	$a = \frac{50}{7}$ or 7.14 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	Po(1.0)	B1	Seen or implied
	$e^{-1}(1+1+\frac{1^2}{2})$	M1	Allow any λ . Allow one end error.
	= 0.920 (3 sfs)	A1	
		3	
7(ii)	$P(X > 3) = 1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2} + \frac{1.5^3}{3!})$	M1	Allow any λ . Allow one end error
	= 0.0656	A1	
		2	
7(iii)(a)	Incorrectly concluding that more absences than usual when there are not oe	B1	In context
		1	
7(iii)(b)	H ₀ : $\lambda = 1.5$ (or 0.3) H ₁ : $\lambda > 1.5$ (or 0.3)	B1	Οr μ Both
	$P(X > 4) = "0.0656" - e^{-1.5} \times \frac{1.5^4}{4!}$ = 0.0186 (3 sf)	M1	or $1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2} + \frac{1.5^3}{3!} + \frac{1.5^4}{4!})$
	P(Type I) = 0.0186 or 0.0185	A1ft	Ft their $P(X > 4)$ if less than 0.05
		3	
7(iii)(c)	P(X > 3) = "0.0656"	B1ft	Ft their (ii)
	0.0656 > 0.05	M1	
	No evidence of more than usual male absences	A1ft	Ft their P(X>3). Correct conclusion. No contradictions.
		3	