Question	Answer			Marks	Guidance
1(i)	15-19 (kg) cao			B1	kg not necessary; condone $14.5-19.5$
	Total:			1	
1(ii)				M1	Attempt at $\mathrm{fd}[\mathrm{f} /($ attempt at cw$)]$ or scaled freq (may be implied by 4 correct)
				A1	Correct heights seen on diagram with linear vertical scale from ($x, 0$)
				B1	Correct bar widths (1:1:1:2:5) visually no gaps with linear horizontal scale from $(9.5, y)$ and first bar starting at $(9.5, y)$
				B1	Histogram, using attempted fds, with labels (mass, kg and fd seen) and at least 3 linearly spaced values on each axis. Horizontal axis must range from at least 9.5 to 59.5 If horizontal axis clearly starts from zero, either a break in the scale must be indicated or the scale must be linear from zero.

Question	Answer	Marks	Guidance
2(i)	$z=0.674$	B1	z value ± 0.674
	$0.674=\frac{0--3}{\sigma}$	M1	\pm Standardising with 0 and equating to a z-value
	$\sigma=4.45$	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
2(ii)	$\begin{aligned} & \mathrm{P}(0,1) \\ & =(0.75)^{8}+{ }^{8} \mathrm{C}_{1}(0.25)(0.75)^{7} \end{aligned}$	M1	Any bin of form ${ }^{8} \mathrm{C}_{\mathrm{x}}(0.75)^{x}(0.25)^{8-x}$ any x
		M1	Correct unsimplified answer, may be implied by numerical values
	$0.1001+0.2670=0.367$	A1	Correct answer
	Method 2$\begin{aligned} & 1-\mathrm{P}(8,7,6,5,4,3,2)=1-(0.25)^{8}-{ }^{8} \mathrm{C}_{1}(0.75)(0.25)^{7}-\ldots \\ & -{ }^{8} \mathrm{C}_{2}(0.75)^{6}(0.25)^{2} \\ & \quad=0.367 \end{aligned}$	M1	Any bin of form ${ }^{8} \mathrm{C}_{\mathrm{x}}(0.75)^{x}(0.25)^{8-x}$ any x
		M1	Correct unsimplified answer
		A1	Correct answer
	Total:	3	

Question	Answer	Marks	Guidance
3(i)	($1-x$) and 0.45 (or 0.3)	B1	Seen, either on tree diagram or elsewhere
	Beginners: $0.7 \times x+{ }^{\prime} 0.45{ }^{\prime} \times{ }^{\prime}(1-x)^{\prime}=0.5$ Or Advanced: ' 0.3 ' $\times x+0.55 \times{ }^{\prime}(1-x)$ ' $=0.5$ Or $0.7 \times x+{ }^{\prime} 0.45{ }^{\prime} \times{ }^{\prime}(1-x)^{\prime}={ }^{\prime} 0.3{ }^{\prime} \times x+0.55 \times{ }^{\prime}(1-x)^{\prime}$	M1	One of the three correct probability equations
	$x=0.2 \mathrm{oe}$	A1	Correct answer
	Total:	3	
3(ii)	$\mathrm{P}(\mathrm{M} \mid \mathrm{A})=\frac{P(M \cap A)}{P(A)}=\frac{0.2 \times 0.3}{0.5}$	M1	' i ' $\times 0.3$ as num or denom of a fraction
		M1	$0.5($ or $(1-' i ') \times 0.55+' i ’ \times 0.3$ unsimplified $)$ seen as denom of a fraction
	$=0.12\left(\frac{3}{25}\right)$	A1	Correct answer
	Total:	3	

Question	Answer	Marks	Guidance
4(i)	Mean $=(30 \times 1500+21 \times 2400) / 51$	M1	Multiply by 30 and 21, summing and dividing total by 51 $\left(\frac{45000+50400}{51}\right)$
	$=1870$ (1870.59)	A1	correct answer (to 3sf)
	Total:	2	
4(ii)	$230^{2}=\frac{\Sigma x_{F}^{2}}{30}-1500^{2} \text { so } \Sigma x_{F}^{2}=69087000$	M1	One correct substitution into a correct variance formula
		A1	Correct Σx_{F}^{2} (rounding to 690000002 sf)
	$160^{2}=\frac{\Sigma x_{L}^{2}}{21}-2400^{2} \text { so } \Sigma x_{L}^{2}=121497600$	A1	Correct Σx_{L}^{2} (rounding to 1210000003 sf)
	$\text { New var }=\frac{69087000+121497600}{51}-1870.588^{2}=237853$	M1	using ' $\Sigma x_{F}^{2,}{ }^{2}$ ' $' \Sigma x_{L}{ }^{2}$ dividing by 51 and subtracting ' i ' squared. (Correct ' $\Sigma x_{F}{ }^{2}{ }^{\prime}+{ }^{\prime}{ }^{\prime} \Sigma x_{L}{ }^{2}=190584$ 600)
	New sd $=488$	A1	Correct answer accept anything between 486 and 490
	Total:	5	

Question	Answer	Marks	Guidance
6(i)	$z_{1}= \pm \frac{4.1-5.7}{0.8}=-2 \quad z_{2}= \pm \frac{5-5.7}{0.8}=-0.875$	M1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	$\begin{aligned} \mathrm{P}(\text { Toffee Apple }) & =\mathrm{P}(d<5.0)-\mathrm{P}(d<4.1) \\ & =\mathrm{P}(z<-0.875)-\mathrm{P}(\mathrm{z}<-2) \\ & =\Phi(-0.875)-\Phi(-2) \\ & =\Phi(2)-\Phi(0.875) \end{aligned}$	M1	Correct area $\Phi-\Phi$ legitimately obtained - need 2 negative z-values or 2 positives - not one of each
	$\begin{aligned} & =0.9772-0.8092=0.168 \\ & \text { (or } 0.1908-0.0228 \text {) } \end{aligned}$	A1	Correct final answer
	Total:	3	
6(ii)	$\mathrm{np}=250 \times 0.168=42, \quad \mathrm{npq}=34.944$	B1ft	Correct unsimplified mean and var - ft their prob for (i) providing $(0<p<1)$ Implied by $\sigma=\sqrt{34.944}=5.911$
	$\mathrm{P}(<50)=\mathrm{P}\left(z<\frac{49.5-42}{\sqrt{34} 044}\right) \quad \mathrm{P}(z<1.2687)$	M1	\pm Standardising using 50, their mean and sd; must have sq rt.
	P $\sqrt{34.944})$	M1	49.5 or 50.5 seen as a cc
	$=\Phi(1.2687)$	M1	Correct area $\Phi(>0.5$ for +z and <0.5 for -z$)$ in their final answer
	$=0.898$	A1	Correct final answer
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	****E**** Other letters arranged in $\frac{8!}{2!3!}$ $=3360 \text { ways }$	M1	Mult by 8 ! or ${ }^{8} \mathrm{P}_{8}$ oe (arrangements ignoring repeats)
		A1	Correct final answer www
	OR$\frac{8 \times 7 \times 6 \times 5 \times 4 \times 4 \times 3 \times 2 \times 1}{4!2!}=3360 \text { ways }$	M1	Correct numerator (161 280)
		A1	Correct final answer www
	Total:	2	
7(ii)	Arrangements other letters \times ways Es inserted$=\frac{5!}{2!} \times{ }^{6} C_{4}\left(\frac{5!}{2!} \times \frac{{ }^{6} P_{4}}{4!}\right)$	M1	k mult by ${ }^{6} C_{4}$ or ${ }^{6} P_{4}$ oe (ways to insert Es ignoring repeats), k can $=1$ or k mult by $\frac{5!}{2!}$
		M1	Correct unsimplified expression or $\frac{5!}{2!} \times{ }^{6} P_{4}$
	$=900$ ways	A1	Correct answer
	OR Total no of ways - no of ways with Es touching $\begin{aligned} & 9!/(4!\times 2!)-\ldots \text { or } 7560-\ldots \\ & \frac{6!}{2!}+{ }^{6} P_{2} \times \frac{5!}{2!}+\frac{{ }^{6} P_{2}}{2!} \times \frac{5!}{2!}+\frac{{ }^{6} \mathrm{P}_{3}}{2!\times \frac{5!}{2!}} \\ & =360+1800+900+3600=6660 \end{aligned}$	M1	7560 unsimplified - k
		M1	Attempting to find four ways of Es touching (4 Es, 3Es and a single, 2 lots of 2 Es, 2 Es and 2 singles)
	$7560-6660=900$	A1	Correct answer

Question	Answer	Marks	Guidance
7(ii)	OR Adding the number of ways with the first E in the $1^{\text {st }}\left(E_{1}\right), 2^{\text {nd }}$ $\left(E_{2}\right)$ or $3^{\text {rd }}\left(E_{3}\right)$ position. $\frac{5!}{2!}\left(\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}\right) \quad$ where $\mathrm{E}_{1}=10, \mathrm{E}_{2}=4, \mathrm{E}_{3}=1$ $\frac{5!}{2!}\left(\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}\right)$	M1	For any values for $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3}
		M1	For any two correct values of $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3}
	$600+240+60=900$	A1	Correct answer
	Total:	3	
7(iii)	EENN* in 3 ways	B1	Numerical value must be stated
	Total:	1	

Question	Answer	Marks	Guidance
7(iv)	EE *** with no N: 1 way EEN** 3C2 or listing 3 ways EENN* 3 ways from (iii)	M1	Identifying the three different scenarios of EE, EEE or EEEE
		A1	Total no of ways with two Es (7 or $3+3+1$)
	EEE** with no N: 3 ways EEEN* 3 ways EEENN 1 way	A1	Total no. of ways with 3 Es (7)
	EEEE* no N 3 ways EEEEN 1 way Total 18 ways	A1	Correct answer stated
	Method List containing ways with 2Es, 3Es and 4Es List containing at least 8 correct different ways List of all 18 correct ways Total 18	M1	At least 1 option listed for each of $\mathrm{EE}^{\wedge \wedge \wedge}, \mathrm{EEE}^{\wedge \wedge}, \mathrm{EEEE}^{\wedge}$
		A1	Ignore repeated options
		A1	Ignore repeated/incorrect options
		A1	Correct answer stated
	Total:	4	

