Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
1(i)	15–19 (kg) cao	B1	kg not necessary; condone 14.5 – 19.5
	Total:	1	
1(ii)	fd = 1.2, 2.4, 2.8, 1, 0.32	M1	Attempt at fd [f/(attempt at cw)] or scaled freq (may be implied by 4 correct)
		A1	Correct heights seen on diagram with linear vertical scale from $(x, 0)$
	fd 2 —	B1	Correct bar widths (1:1:1:2:5) visually no gaps with linear horizontal scale from $(9.5, y)$ and first bar starting at $(9.5, y)$
		B1	Histogram, using attempted fds, with labels (mass, kg and fd seen) and at least 3 linearly spaced values on each axis.
			Horizontal axis must range from at least 9.5 to 59.5
	0 9.5 19.5 39.5 59.5 Mass (kg)		If horizontal axis clearly starts from zero, either a break in the scale must be indicated or the scale must be linear from zero.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(i)	z = 0.674	B1	z value ± 0.674
	$0.674 = \frac{03}{\sigma}$	M1	±Standardising with 0 and equating to a z-value
	$\sigma = 4.45$	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
2(ii)	P(0, 1)	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$= (0.75)^8 + {}^{8}C_1(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values
	0.1001 + 0.2670 = 0.367	A1	Correct answer
	Method 2 $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7 - \dots$	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x} (0.25)^{8-x}$ any x
	$-{}^{8}C_{2}(0.75)^{6}(0.25)^{2}$	M1	Correct unsimplified answer
	= 0.367	A1	Correct answer
	Total:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
3(i)	(1-x) and 0.45 (or 0.3)	B1	Seen, either on tree diagram or elsewhere
	Beginners: $0.7 \times x + `0.45' \times `(1 - x)' = 0.5$ Or Advanced: $`0.3' \times x + 0.55 \times `(1 - x)' = 0.5$ Or $0.7 \times x + `0.45' \times `(1 - x)' = `0.3' \times x + 0.55 \times `(1 - x)'$	M1	One of the three correct probability equations
	x = 0.2 oe	A1	Correct answer
	Total:	3	
3(ii)	P(M A) = $\frac{P(M \cap A)}{P(A)} = \frac{0.2 \times 0.3}{0.5}$	M1	'i' \times 0.3 as num or denom of a fraction
		M1	0.5 (or $(1 - i) \times 0.55 + i \times 0.3$ unsimplified) seen as denom of a fraction
	$= 0.12 \left(\frac{3}{25}\right)$	A1	Correct answer
	Total:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
4(i)	Mean = $(30 \times 1500 + 21 \times 2400)/51$	M1	Multiply by 30 and 21, summing and dividing total by 51 $\left(\frac{45000+50400}{51}\right)$
	= 1870 (1870.59)	A1	correct answer (to 3sf)
	Total:	2	
4(ii)	$230^2 = \frac{\Sigma x_F^2}{30} - 1500^2 \text{ so } \Sigma x_F^2 = 69\ 087\ 000$	M1	One correct substitution into a correct variance formula
		A1	Correct Σx_F^2 (rounding to 69 000 000 2sf)
	$160^2 = \frac{\Sigma x_L^2}{21} - 2400^2 \text{ so } \Sigma x_L^2 = 121497600$	A1	Correct Σx_L^2 (rounding to 121 000 000 3sf)
	New var = $\frac{69087000 + 121497600}{51} - 1870.588^2 = 237853$	M1	using Σx_F^2 + Σx_L^2 dividing by 51 and subtracting 'i' squared.
	51		(Correct ' Σx_F^2 ', + '' $\Sigma x_L^2 = 190584600$)
	New sd = 488	A1	Correct answer accept anything between 486 and 490
	Total:	5	

9709/63

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$ \begin{array}{l} P(0) = 0.6 \times 0.25 \times 0.5 = 0.075 \\ P(1) = 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 + 0.6 \times 0.25 \times 0.5 = \\ 0.35 \end{array} $	B1	0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(0), P(1), P(2) and P(3)
	$P(2) = 0.4 \times 0.75 \times 0.5 + 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 = 0.425$ P(3) = $0.4 \times 0.75 \times 0.5 = 0.15$	M1	Multiply 3 probabilities together from 0.4 or 0.6, 0.25 or 0.75, 0.5 with or without a table
	No of heads 0 1 2 3	M1	Summing 3 probabilities for P(1) or P(2) with or without a table
	Prob 0.075 0.35 0.425 0.15	B1	One correct probability seen.
	$\left \begin{array}{c c} \left(\frac{3}{40}\right) \\ \hline \left(\frac{7}{20}\right) \\ \hline \left(\frac{17}{40}\right) \\ \hline \left(\frac{3}{20}\right) \\ \hline \end{array} \right $	A1	All correct in a table
	Total:	5	
5(ii)	E(X) = 0.35 + 2 × 0.425 + 3 × 0.15 = 1.65 $\left(\frac{33}{20} \text{ oe}\right)$	M1	Correct unsimplified expression for the mean using their table, $\sum p = 1$; can be implied by correct answer
5(ii)	$Var(X) = 0.35 + 4 \times 0.425 + 9 \times 0.15 - 1.65^{2}$	M1	Correct unsimplified expression for the variance using their table and their mean ² subtracted, $\sum p = 1$
	$= 0.678 (0.6775) \left(\frac{271}{400} \text{ oe} \right)$	A1	Correct answer
	Total:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
6(i)	$z_1 = \pm \frac{4.1 - 5.7}{0.8} = -2 \qquad z_2 = \pm \frac{5 - 5.7}{0.8} = -0.875$	M1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	P(Toffee Apple) = P($d < 5.0$) – P($d < 4.1$) = P($z < -0.875$) – P($z < -2$) = $\Phi(-0.875) - \Phi(-2)$ = $\Phi(2) - \Phi(0.875)$	M1	Correct area $\Phi - \Phi$ legitimately obtained – need 2 negative z-values or 2 positives – not one of each
	= 0.9772 - 0.8092 = 0.168 (or 0.1908 - 0.0228)	A1	Correct final answer
	Total:	3	
6(ii)	$np = 250 \times 0.168 = 42$, $npq = 34.944$	B1ft	Correct unsimplified mean and var – ft their prob for (i) providing (0 Implied by $\sigma = \sqrt{34.944} = 5.911$
	$P(<50) = P\left(z < \frac{49.5 - 42}{\sqrt{34.944}}\right) = P(z < 1.2687)$	M1	\pm Standardising using 50, their mean and sd; must have sq rt.
		M1	49.5 or 50.5 seen as a cc
	$=\Phi(1.2687)$	M1	Correct area $\Phi(> 0.5 \text{ for } + z \text{ and } < 0.5 \text{ for } -z)$ in their final answer
	= 0.898	A1	Correct final answer
	Total:	5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9709 s18 ms 63

Question	Answer	Marks	Guidance
7(i)	****E****	M1	Mult by 8! or ⁸ P ₈ oe (arrangements ignoring repeats)
	Other letters arranged in $\frac{8!}{2!3!}$		
	= 3360 ways	A1	Correct final answer www
	OR	M1	Correct numerator (161 280)
	$\frac{8 \times 7 \times 6 \times 5 \times 4 \times 4 \times 3 \times 2 \times 1}{4!2!} = 3360 \text{ ways}$	A1	Correct final answer www
	Total:	2	
7(ii)	* * * *	M1	k mult by ${}^{6}C_{4}$ or ${}^{6}P_{4}$ oe (ways to insert Es ignoring repeats), k can = 1
	Arrangements other letters \times ways Es inserted		or k mult by $\frac{5!}{2!}$
	$=\frac{5!}{2!} \times {}^{6}C_{4}\left(\frac{5!}{2!} \times \frac{{}^{6}P_{4}}{4!}\right)$	M1	Correct unsimplified expression or $\frac{5!}{2!} \times {}^6P_4$
	= 900 ways	A1	Correct answer
	OR Total no of ways – no of ways with Es touching $9!/(4! \times 2!) - \dots$ or 7 560 – $\frac{6!}{2!} + {}^{6}P_{2} \times \frac{5!}{2!} + \frac{{}^{6}P_{2}}{2!} \times \frac{5!}{2!} + \frac{{}^{6}P_{3}}{2! \times \frac{5!}{2!}}$ = 360 + 1800 + 900 + 3600 = 6660	M1	7560 unsimplified – k
		M1	Attempting to find four ways of Es touching (4 Es, 3Es and a single, 2 lots of 2 Es, 2 Es and 2 singles)
	7 560 - 6 660 = 900	A1	Correct answer

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
7(ii)	OR Adding the number of ways with the first E in the 1 st (E ₁), 2 nd (E ₂) or 3 rd (E ₃) position. $\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃) where E ₁ = 10, E ₂ = 4, E ₃ = 1	M1	For any values for E_1 , E_2 and E_3
		M1	For any two correct values of E_1 , E_2 and E_3
	$\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃)		
	600 + 240 + 60 = 900	A1	Correct answer
	Total:	3	
7(iii)	EENN* in 3 ways	B1	Numerical value must be stated
	Total:	1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(iv)	EE *** with no N: 1 way EEN** 3C2 or listing 3 ways EENN* 3 ways from (iii)	M1	Identifying the three different scenarios of EE, EEE or EEEE
		A1	Total no of ways with two Es $(7 \text{ or } 3 + 3 + 1)$
	EEE** with no N: 3 ways EEEN* 3 ways EEENN 1 way	A1	Total no. of ways with 3 Es (7)
	EEEE* no N 3 ways EEEEN 1 way Total 18 ways	A1	Correct answer stated
	Method List containing ways with 2Es, 3Es and 4Es List containing at least 8 correct different ways List of all 18 correct ways Total 18	M1	At least 1 option listed for each of EE^^^, EEE^^
		A1	Ignore repeated options
		A1	Ignore repeated/incorrect options
		A1	Correct answer stated
	Total:	4	