Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
1(i)	38	B1	
		1	
1(ii)	Median = 38.5	B1	CAO
	IQR = 40 - 38	M1	$39 < UQ < 45 - 36 < LQ \leq 38$
	= 2	A1	If M0 awarded SCB1 for both UQ = 40 or 40.5 and LQ = 38 or 37.75 seen
		3	

May/June 2018

Question	Answer	Marks	Guidance
2(i)	Method 1	B1	Seen, accept unsimplified
	$P(M \cap H) = \frac{3}{4} \times \frac{3}{5} = \frac{9}{20} \ (0.45)$		
	$P(F \text{ or } M \cap H) = \frac{1}{2} + \frac{9}{2} = \frac{14}{2}$	M1	Numerical attempt at $P(F) + P(M \cap H)$
	4 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}(0.7)$ OE	A1	Correct final answer
	Method 2 $P(M \cap H') = \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} (0.3)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = 1 - P(M \cap H')$	M1	Numerical attempt at $1 - P(M \cap H')$
	$=1-\frac{3}{4}\times\frac{2}{5}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer

May/June 2018

Question	Answer	Marks	Guidance
2(i)	Method 3 P($F \cap H'$ or H) = $\frac{1}{4} \times \frac{1}{5} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5}$	B1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right)$ seen
	$=\frac{1}{1}+\frac{4}{1}+\frac{9}{1}$	M1	Numerical attempt at $P(F \cap H') + P(F \cap H) + P(M \cap H)$
	20 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
	Method 4 – Venn diagram style approach $P(F \cup H) = P(F) + P(H) - P(F \cap H)$	B1	$\frac{3}{4} \times \frac{3}{5} (\frac{9}{20})$ or $\frac{1}{4} \times \frac{4}{5} (\frac{4}{20})$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} (\frac{13}{20})$ seen
	$= \frac{1}{4} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5} - \frac{1}{4} \times \frac{4}{5}$	M1	Numerical attempt at $P(F) + P(H) - P(F \cap H)$
	$=\frac{1}{4}+\frac{4}{20}+\frac{9}{20}-\frac{4}{20}$	A1	Correct unsimplified expression
	$=\frac{7}{10}(0.7)$ oe	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
2(ii)	Method 1 $(P(M) \times P(H) =) \frac{3}{4} \times their \frac{13}{20} = \frac{39}{80}$ $(P(M \cap H) =) \frac{3}{4} \times \frac{3}{5} = 0.45$	M1	Unsimplified, or better, legitimate numerical attempt at $P(M) \times P(H)$ and $P(M \cap H)$ Descriptors $P(M \cap H)$ and $P(M) \times P(H)$ seen, correct numerical evaluation and comparison, conclusion stated
	$\frac{39}{80}$ (0.4875) \neq 0.45, not independent	A1	
	Method 2 $P(M H) = \frac{P(M \cap H)}{P(H)} = \frac{\frac{9}{20}}{\text{their } \frac{13}{20}} = \frac{9}{13}$ $P(M) = \frac{3}{4}$	M1	Unsimplified, or better, numerical attempt at $P(H)$ and $P(M \cap H)$, $P(M)$
	$\frac{9}{13} \neq \frac{3}{4}$, not independent	A1	Descriptors $P(M \cap H)$, $P(H)$ and $P(M)$ OR $P(M H)$ and $P(M)$ seen, numerical evaluation and comparison, conclusion stated Any appropriate relationship can be used, the M is awarded for an unsimplified, or better, numerical attempt at the terms required, the A mark requires the correct descriptors, numerical evaluation and comparison and the conclusion
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
3(i)	z = -1.282	B1	±1.282 seen
	$-1.282 = \frac{440 - \mu}{9}$	M1	±Standardisation equation with 440, 9 and μ , equated to a <i>z</i> -value, (not $1 - z$ -value or probability e.g. 0.1841, 0.5398, 0.6202, 0.8159)
	$\mu = 452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
3(ii)	P(z > 1.8) = 1 - 0.9641 = 0.0359	B1	
	Number = 0.0359×150 = 5.385	M1	$p \times 150, 0$
	(Number of cartons =) 5	A1FT	Accept either 5 or 6, not indicated as an approximation, e.g. \sim , about FT <i>their</i> $p \times 150$, answer as an integer
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

	PU	BLISHED	9709_s18_ms_62
Question	Answer	Marks	Guidance
4(i)	X 0 1 2 Prob $\frac{2}{7}$ $\frac{4}{7}$ $\frac{1}{7}$	B1	Prob distribution table drawn, top row correct with at least one probability $0 entered, condone additional values with p = 0 stated$
	$P(0) = \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7} (0.2857)$	B1	One probability correct (need not be in table)
	$P(1) = \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{3}C_{1} = \frac{4}{7} (0.5713)$	B1	Another probability correct (need not be in table).
	$P(2) = \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times {}^{3}C_{2} = \frac{1}{7} (0.1429)$	B1	Values in table, all probs correct (to 3SF) or 3 probabilities summing to 1
		4	
4(ii)	Var (X) = $1 \times \frac{4}{7} + 4 \times \frac{1}{7} - (\frac{6}{7})^2$ = $\frac{8}{7} - (\frac{6}{7})^2$	M1	Unsimplified correct numerical expression for variance or <i>their</i> probabilities from (i) $0 in unsimplified varianceexpression$
	$=\frac{20}{49}$ or 0.408	A1	Correct answer (0.40816) nfww Final answer does not imply the method mark
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
5(i)	a = 40	B1	
		1	
5(ii)	Mean = $\frac{0.5 \times 14 + 1.5 \times 46 + 3.5 \times 102 + 7.5 \times their 40 + 20 \times 40}{242}$	M1	Numerator: 5 products with at least 3 acceptable mid-points \times appropriate frequency FT (i). Denominator: 242 CAO
	$=\frac{1533}{242}$		$\frac{1533}{242}$ implies M1, but if FT an unsimplified expression required
	$= 6\frac{81}{242}$ or 6.33	A1	CAO (6.3347 rounded to 3 or more SF)
		2	
5(iii)	fd = 14, 46, 34, $(\frac{their(i)}{5} =)$ 8, 2	M1	Attempt at fd [f/(attempt at cw)] or scaled freq
	$\begin{bmatrix} fd & \bullet \\ 50 & \bullet \\ 40 & \bullet \end{bmatrix} \square$	A1FT	Correct heights seen on diagram with linear vertical scale from (x, 0) FT their $\frac{a}{5}$ only
		B1	Correct bar widths (1:1:3:5:20) at axis, visually no gaps, with linear horizontal scale from $(0, y)$, first bar starting at $(0, 0)$
	20 - 1 10 - 5 10 15 20 25 30 Length phone call /mins	B1	Labels (time, mins, and fd(OE) seen, some may be as a title) and a linear scale with at least 3 values marked on each axis. (Interval notation not acceptable)
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

0100/02	PUBLISHE		9709_s18_ms_62
Question	Answer	Marks	Guidance
6(a)(i)	(AAAIU) * * * * Arrangements of vowels/repeats × arrangements of (consonants & vowel group) =	M1	$k \times 5!$ (k is an integer, $k \ge 1$)
	$\frac{5!\times 5!}{3!}$	M1	$\frac{m}{3}$! (<i>m</i> is an integer, <i>m</i> ≥ 1) Both Ms can only be awarded if expression is fully correct
	= 2400	A1	Correct answer
		3	
6(a)(ii)	E.g. R * * * T * * * L. Arrangements of consonants RL, RS, SL = ${}^{3}P_{2} = 6$ Arrangements of remaining letters = $\frac{6!}{3!} = 120$	M1	$k \times \frac{6!}{3!}$ or $k \times {}^{3}P_{2}$ or $k \times {}^{3}C_{2}$ or $k \times 3!$ or $k \times 3 \times 2$ (k is an integer, $k \ge 1$), no irrelevant addition
	Total 120 × 6	M1	Correct unsimplified expression or $\frac{6!}{3!} \times {}^{3}C_{2}$
	= 720 ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
6(b)	Method 1 N(2) R(8) Br(4) 1 2 1 $= 2 \times {}^{8}C_{2} \times 4 = 224$	M1	Multiply 3 combinations, ${}^{2}C_{x} \times {}^{8}C_{y} \times {}^{4}C_{z}$. Accept ${}^{2}C_{1} = 2$ etc.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	3 or more options correct unsimplified
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Summing <i>their</i> values of 4 or 5 legitimate scenarios (no extra scenarios)
	Total = 366 ways	A1	Correct answer
	Method 2 ${}^{14}C_4 - (2N2R \text{ or } 1N3R \text{ or } 4R \text{ or } 3R1B \text{ or } 2R2B \text{ or } 1R3B \text{ or } 4B)$	M1	$^{14}C_4 - k'$ seen, k an integer from an expression containing 8C_x
	$1001 - (1 \times {}^{8}C_{2} + 2 \times {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{3} \times 4 + {}^{8}C_{2} \times {}^{4}C_{2} + 8 \times 4 + 1)$	A1	4 or more 'subtraction' options correct unsimplified, may be in a list
	1001 - (28 + 112 + 70 + 224 + 168 + 32 + 1)	M1	<i>Their</i> ${}^{14}C_4 - [their values of 6 or more legitimate scenarios] (no extra scenarios, condone omission of final bracket)$
	= 366	A1	Correct answer
		4	

Question	Answer	Marks	Guidance
7(i)	Method 1 P(<11) = 1 - P(11, 12, 13)	M1	Binomial expression of form ${}^{13}C_x (p)^x (1-p)^{13-x}$, $0 < x < 13$, 0
	$= 1 - {}^{13}C_{11}(0.6)^{11}(0.4)^2 - {}^{13}C_{12}(0.6)^{12}(0.4) - (0.6)^{13}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
	Method 2 P(<11) = P(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	M1	Binomial expression of form ${}^{13}C_x (p)^x (1-p)^{13-x} 0 < x < 13, 0 < p < 1$
	$= (0.4)^{13} + {}^{13}C_1(0.4)^{12}(0.6) + \ldots + {}^{13}C_{10}(0.4)^3(0.6)^{10}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
		3	
7(ii)	$\mu = 130 \times 0.35 = 45.5$ var $= 130 \times 0.35 \times 0.65 = 29.575$	B1	Correct unsimplified mean and var (condone $\sigma^2 = 29.6, \sigma = 5.438$)
	P(≥ 50) = P $\left(z > \frac{49.5 - 45.5}{\sqrt{29.575}}\right)$ = P (z > 0.7355)	M1	Standardising, using $\pm \left(\frac{x - their \text{ mean}}{their \sigma}\right)$, $x = \text{value to standardise}$ 49.5 or 50.5 seen in \pm standardisation equation
	$= 1 - \Phi(0.7355)$	M1	Correct final area
	= 1 - 0.7691	M1	
	= 0.231	A1	Correct final answer
		5	

9709 s18 ms 62

Question	Answer	Marks	Guidance
7(iii)	$1 - (0.65)^n > 0.98$ or $0.02 > (0.65)^n$	M1	Eqn or inequality involving, 0.65^n and 0.02 or 0.35^n and 0.98
	<i>n</i> > 9.08	M1	Attempt to solve their eqn or inequality by logs or trial and error
	<i>n</i> = 10	A1	CAO
		3	