Question	Answer	Marks	Guidance
1(i)	38	B1	
		1	
1(ii)	Median $=38.5$	B1	CAO
	$\mathrm{IQR}=40-38$	M1	$39<\mathrm{UQ}<45-36<\mathrm{LQ} \leqslant 38$
	$=2$	A1	If M0 awarded SCB1 for both $\mathrm{UQ}=40$ or 40.5 and $\mathrm{LQ}=38$ or 37.75 seen
		3	

Question	Answer	Marks	Guidance
2(i)	Method 1 $\mathrm{P}(M \cap H)=\frac{3}{4} \times \frac{3}{5}=\frac{9}{20}(0.45)$	B1	Seen, accept unsimplified
	$\mathrm{P}(F$ or $M \cap H)=\frac{1}{4}+\frac{9}{20}=\frac{14}{20}$	M1	Numerical attempt at $\mathrm{P}(F)+\mathrm{P}(M \cap H)$
	420	A1	Correct unsimplified expression
	$=\frac{7}{10}(0.7) \mathrm{OE}$	A1	Correct final answer
	Method 2 $\begin{equation*} \mathrm{P}\left(M \cap H^{\prime}\right)=\frac{3}{4} \times \frac{2}{5}=\frac{6}{20} \tag{0.3} \end{equation*}$	B1	Seen, accept unsimplified
	$\mathrm{P}(F$ or $M \cap H)=1-\mathrm{P}\left(M \cap H^{\prime}\right)$	M1	Numerical attempt at $1-\mathrm{P}\left(M \cap H^{\prime}\right)$
	$=1-\frac{3}{4} \times \frac{2}{5}$	A1	Correct unsimplified expression
	$=\frac{7}{10}(0.7) \mathrm{OE}$	A1	Correct final answer

Question	Answer	Marks	Guidance
2(i)	Method 3 $\mathrm{P}\left(F \cap H^{\prime} \text { or } H\right)=\frac{1}{4} \times \frac{1}{5}+\frac{1}{4} \times \frac{4}{5}+\frac{3}{4} \times \frac{3}{5}$	B1	$\frac{3}{4} \times \frac{3}{5}\left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5}\left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5}+\frac{1}{4} \times \frac{4}{5}\left(\frac{13}{20}\right)$ seen
	$=\frac{1}{20}+\frac{4}{20}+\frac{9}{20}$	M1	Numerical attempt at $\mathrm{P}\left(F \cap H^{\prime}\right)+\mathrm{P}(F \cap H)+\mathrm{P}(M \cap H)$
		A1	Correct unsimplified expression
	$=\frac{7}{10}(0.7) \mathrm{oe}$	A1	Correct final answer
	Method 4 - Venn diagram style approach $\mathrm{P}(F \mathrm{U} H)=\mathrm{P}(F)+\mathrm{P}(H)-\mathrm{P}(F \cap H)$	B1	$\frac{3}{4} \times \frac{3}{5}\left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5}\left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5}+\frac{1}{4} \times \frac{4}{5}\left(\frac{13}{20}\right)$ seen
	$=\frac{1}{4}+\frac{1}{4} \times \frac{4}{5}+\frac{3}{4} \times \frac{3}{5}-\frac{1}{4} \times \frac{4}{5}$	M1	Numerical attempt at $\mathrm{P}(F)+\mathrm{P}(H)-\mathrm{P}(F \cap H)$
	$=\frac{1}{4}+\frac{4}{20}+\frac{9}{20}-\frac{4}{20}$	A1	Correct unsimplified expression
	$=\frac{7}{10}(0.7) \mathrm{oe}$	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
2(ii)	Method 1 $\begin{aligned} & (\mathrm{P}(M) \times \mathrm{P}(H)=) \frac{3}{4} \times \text { their } \frac{13}{20}=\frac{39}{80} \\ & (\mathrm{P}(M \cap H)=) \frac{3}{4} \times \frac{3}{5}=0.45 \end{aligned}$	M1	Unsimplified, or better, legitimate numerical attempt at $\mathrm{P}(M) \times \mathrm{P}(H)$ and $\mathrm{P}(M \cap H)$ Descriptors $\mathrm{P}(M \cap H)$ and $\mathrm{P}(M) \times \mathrm{P}(H)$ seen, correct numerical evaluation and comparison, conclusion stated
	$\frac{39}{80}(0.4875) \neq 0.45$, not independent	A1	
	Method 2 $\begin{aligned} \mathrm{P}(M \mid H) & =\frac{\mathrm{P}(M \cap H)}{\mathrm{P}(H)}=\frac{\frac{9}{20}}{\text { their } \frac{13}{20}}=\frac{9}{13} \\ \mathrm{P}(M) & =\frac{3}{4} \end{aligned}$	M1	Unsimplified, or better, numerical attempt at $\mathrm{P}(H)$ and $\mathrm{P}(M \cap H), \mathrm{P}(M)$
	$\frac{9}{13} \neq \frac{3}{4}$, not independent	A1	Descriptors $\mathrm{P}(M \cap H), \mathrm{P}(H)$ and $\mathrm{P}(M)$ OR $\mathrm{P}(M \mid H)$ and $\mathrm{P}(M)$ seen, numerical evaluation and comparison, conclusion stated Any appropriate relationship can be used, the M is awarded for an unsimplified, or better, numerical attempt at the terms required, the A mark requires the correct descriptors, numerical evaluation and comparison and the conclusion
		2	

Question	Answer	Marks	Guidance
3(i)	$z=-1.282$	B1	± 1.282 seen
	$-1.282=\frac{440-\mu}{9}$	M1	\pm Standardisation equation with 440,9 and μ, equated to a z-value, (not $1-z$-value or probability e.g. $0.1841,0.5398,0.6202,0.8159$)
	$\mu=452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
3(ii)	$\mathrm{P}(z>1.8)=1-0.9641=0.0359$	B1	
	$\begin{aligned} \text { Number } & =0.0359 \times 150 \\ & =5.385 \end{aligned}$	M1	$p \times 150,0<p<1$
	$($ Number of cartons $=) 5$	A1FT	Accept either 5 or 6 , not indicated as an approximation, e.g. \sim, about FT their $p \times 150$, answer as an integer
		3	

Question	Answer				Marks	Guidance
4(i)	X	0	1	2	B1	Prob distribution table drawn, top row correct with at least one probability $0<p<1$ entered, condone additional values with $p=0$ stated
	Prob	$\frac{2}{7}$	$\frac{4}{7}$	$\frac{1}{7}$		
	$\mathrm{P}(0)=\frac{5}{7} \times \frac{4}{6} \times \frac{3}{5}=\frac{2}{7}(0.2857)$				B1	One probability correct (need not be in table)
	$\mathrm{P}(1)=\frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times{ }^{3} C_{1}=\frac{4}{7}(0.5713)$				B1	Another probability correct (need not be in table).
	$\mathrm{P}(2)=\frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times{ }^{3} C_{2}=\frac{1}{7}(0.1429)$				B1	Values in table, all probs correct (to 3 SF) or 3 probabilities summing to 1
					4	
4(ii)	$\begin{aligned} \operatorname{Var}(X) & =1 \times \frac{4}{7}+4 \times \frac{1}{7}-\left(\frac{6}{7}\right)^{2} \\ & =\frac{8}{7}-\left(\frac{6}{7}\right)^{2} \end{aligned}$				M1	Unsimplified correct numerical expression for variance or their probabilities from (i) $0<p<1$ in unsimplified variance expression
	$=\frac{20}{49} \text { or } 0.408$				A1	Correct answer (0.40816...) nfww Final answer does not imply the method mark
					2	

Question	Answer	Marks	Guidance
5(i)	$a=40$	B1	
		1	
5(ii)	$\begin{aligned} & \text { Mean }=\frac{0.5 \times 14+1.5 \times 46+3.5 \times 102+7.5 \times \text { their } 40+20 \times 40}{242} \\ & =\frac{1533}{242} \end{aligned}$	M1	Numerator: 5 products with at least 3 acceptable mid-points \times appropriate frequency FT (i). Denominator: 242 CAO $\frac{1533}{242}$ implies M1, but if FT an unsimplified expression required
	$=6 \frac{81}{242} \text { or } 6.33$	A1	CAO (6.3347 \ldots r rounded to 3 or more SF)
		2	
5(iii)	$\mathrm{fd}=14,46,34,\left(\frac{\text { their }(i)}{5}=\right) 8,2$	M1	Attempt at fd [f/(attempt at cw$)]$ or scaled freq
		A1FT	Correct heights seen on diagram with linear vertical scale from $(x, 0)$ FT their $\frac{a}{5}$ only
		B1	Correct bar widths (1:1:3:5:20) at axis, visually no gaps, with linear horizontal scale from $(0, y)$, first bar starting at $(0,0)$
		B1	Labels (time, mins, and $\mathrm{fd}(\mathrm{OE})$ seen, some may be as a title) and a linear scale with at least 3 values marked on each axis. (Interval notation not acceptable)
		4	

Question	Answer	Marks	Guidance
6(a)(i)	$(\mathrm{AAAIU}) * * * *$ Arrangements of vowels/repeats \times arrangements of $($ consonants $\&$ vowel group $)=$	M1	$k \times 5!(k$ is an integer, $k \geqslant 1)$
	$\frac{5!\times 5!}{3!}$	M1	$\frac{m}{3}!(m \text { is an integer, } m \geqslant 1)$ Both Ms can only be awarded if expression is fully correct
	$=2400$	A1	Correct answer
		3	
6(a)(ii)	E.g. $\mathrm{R} * * * \mathrm{~T} * * * \mathrm{~L}$. Arrangements of consonants RL, RS, $\mathrm{SL}={ }^{3} \mathrm{P}_{2}=6$ Arrangements of remaining letters $=\frac{6!}{3!}=120$	M1	$k \times \frac{6!}{3!}$ or $k \times{ }^{3} \mathrm{P}_{2}$ or $k \times{ }^{3} \mathrm{C}_{2}$ or $k \times 3$! or $k \times 3 \times 2(k$ is an integer, $k \geqslant 1)$, no irrelevant addition
	Total 120×6	M1	Correct unsimplified expression or $\frac{6!}{3!} \times{ }^{3} \mathrm{C}_{2}$
	$=720$ ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
6(b)	$\begin{array}{lll} \text { Method 1 } \\ \mathrm{N}(2) & \mathrm{R}(8) & \mathrm{Br}(4) \\ 1 & 2 & 1 \end{array}=2 \times{ }^{8} \mathrm{C}_{2} \times 4=224 .$	M1	Multiply 3 combinations, ${ }^{2} \mathrm{C}_{x} \times{ }^{8} \mathrm{C}_{y} \times{ }^{4} \mathrm{C}_{z}$. Accept ${ }^{2} \mathrm{C}_{1}=2$ etc.
	$\begin{array}{llll} 2 & 1 & 1 & =1 \times{ }^{8} \mathrm{C}_{1} \times 4=32 \\ 1 & 1 & 2 & =2 \times 8 \times{ }^{4} \mathrm{C}_{2}=96 \end{array}$	A1	3 or more options correct unsimplified
	$\begin{array}{llll} 2 & 0 & 2 & =1 \times 1 \times{ }^{4} \mathrm{C}_{2}=6 \\ 1 & 0 & 3 & =2 \times 1 \times 4=8 \end{array}$	M1	Summing their values of 4 or 5 legitimate scenarios (no extra scenarios)
	Total $=366$ ways	A1	Correct answer
	Method 2 ${ }^{14} \mathrm{C}_{4}-(2 \mathrm{~N} 2 \mathrm{R}$ or 1 N 3 R or 4 R or 3 R 1 B or 2 R 2 B or 1 R 3 B or 4 B$)$	M1	${ }^{14} \mathrm{C}_{4}-k$ ' seen, k an integer from an expression containing ${ }^{8} \mathrm{C}_{x}$
	$1001-\left(1 \times{ }^{8} \mathrm{C}_{2}+2 \times{ }^{8} \mathrm{C}_{3}+{ }^{8} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{3} \times 4+{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}+8 \times 4+1\right)$	A1	4 or more 'subtraction' options correct unsimplified, may be in a list
	$1001-(28+112+70+224+168+32+1)$	M1	Their ${ }^{14} \mathrm{C}_{4}-[$ their values of 6 or more legitimate scenarios] (no extra scenarios, condone omission of final bracket)
	$=366$	A1	Correct answer
		4	

Question	Answer	Marks	Guidance
7(i)	Method 1 $\mathrm{P}(<11)=1-\mathrm{P}(11,12,13)$	M1	Binomial expression of form ${ }^{13} \mathrm{C}_{\mathrm{x}}(p)^{x}(1-p)^{13-x}, 0<x<13,0<p<1$
	$=1-{ }^{13} \mathrm{C}_{11}(0.6){ }^{11}(0.4)^{2}-{ }^{13} \mathrm{C}_{12}(0.6){ }^{12}(0.4)-(0.6){ }^{13}$	M1	Correct unsimplified answer
	$=0.942$	A1	CAO
	Method 2 $\mathrm{P}(<11)=\mathrm{P}(0,1,2,3,4,5,6,7,8,9,10)$	M1	Binomial expression of form ${ }^{13} \mathrm{C}_{\mathrm{x}}(p)^{x}(1-p)^{13-x} 0<x<13,0<p<1$
	$=(0.4){ }^{13}+{ }^{13} \mathrm{C}_{1}(0.4)^{12}(0.6)+\ldots+{ }^{13} \mathrm{C}_{10}(0.4)^{3}(0.6)^{10}$	M1	Correct unsimplified answer
	$=0.942$	A1	CAO
		3	
7(ii)	$\mu=130 \times 0.35=45.5$ var $=130 \times 0.35 \times 0.65=29.575$	B1	Correct unsimplified mean and var (condone $\left.\sigma^{2}=29.6, \sigma=5.438\right)$
	$\mathrm{P}(\geqslant 50)=\mathrm{P}\left(z>\frac{49.5-45.5}{\sqrt{29.575}}\right)=\mathrm{P}(z>0.7355)$	M1	Standardising, using $\pm\left(\frac{x-\text { their mean }}{\text { their } \sigma}\right), x=$ value to standardise 49.5 or 50.5 seen in \pm standardisation equation
	$=1-\Phi(0.7355)$	M1	Correct final area
	$=1-0.7691$	M1	
	$=0.231$	A1	Correct final answer
		5	

Question	Answer	Marks	
7 (iii)	$1-(0.65)^{n}>0.98$ or $0.02>(0.65)^{\mathrm{n}}$	$\mathbf{M 1}$	Eqn or inequality involving, 0.65^{n} and 0.02 or 0.35^{n} and 0.98
	$n>9.08$	$\mathbf{M 1}$	Attempt to solve their eqn or inequality by logs or trial and error
	$n=10$	$\mathbf{A 1}$	CAO
		$\mathbf{3}$	

