Question	Answer	Marks	Guidance
1	Vertical component of velocity = $25 - 4g$	M1	Use $v = u + at$
	$v^2 = 18^2 + (25 - 4g)^2$ or $\tan \theta = \frac{(25 - 4g)}{18}$	M1	
	$v = 23.4 \text{ ms}^{-1}$	A1	
	$\theta = 39.8^{\circ}$ below the horizontal	A1	
		4	

Question	Answer	Marks	Guidance
2		M1	Attempt to take moments about A
	$8x\cos 30 = 0.5 \times 12\sin 30$	A1	Correct equation
	x = 0.433 m	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$0.4\frac{\mathrm{d}v}{\mathrm{d}t} = 0.8t - 2e^{-t}$	M1	Use Newton's Second Law horizontally
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 5e^{-t}$	A1	AG
		2	
3(ii)	$\int dv = \int (2t - 5e^{-t}) dt$ $v = t^2 + 5e^{-t} (+ c)$	M1	Attempt to integrate the equation from part (i)
	t = 1 and v = 8 so c = 5.16	M1	Attempt to find the constant of integration, c
	$v = t^2 + 5e^{-t} + 5.16$ or $v = t^2 + 5e^{-t} + 7 - 5e^{-1}$	A1	
		3	
3(iii)	Evaluates v for $t = 0$	M1	
	$V = 10.2 \text{ ms}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
4(i)	$x = (V\cos 45)t$	B1	Use horizontal motion
	$y = (V\sin 45)t - \frac{gt^2}{2}$	B1	Use $s = ut + \frac{1}{2}gt^2$ vertically
	$y = \frac{(V\sin 45)x}{(V\cos 45)} - \frac{1}{2}g\left(\frac{x}{V\cos 45}\right)^2$	M1	Attempt to eliminate t
	$y = x - \frac{10x^2}{V^2}$	A1	
		4	
4(ii)	$18 = 24 - \frac{10 \times 24^2}{V^2}$	M1	Substitutes $x = 18$, $y = 24$ in part (i) equation
	V = 31(.0)	A1	
		2	
4(iii)	$22.5 = x - \frac{10x^2}{960}$	M1	Put $y = 22.5$ in part (i)
	$x^2 - 96x + 2160 = 0$	M1	Attempt to solve a quadratic equation
	x = 36, 60	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$1.8 = \frac{20e^2}{(2 \times 0.5)}$	M1	Use $T = \frac{\lambda x}{l}$
	e = 0.3, OA = 0.8	A1	
		2	
5(ii)	$0.7g\sin 30 = \frac{20x}{0.5}$	M1	Use Newton's Second Law up the plane
	x = 0.0875 m	A1	
	$EPE = \frac{20 \times 0.0875^2}{(2 \times 0.5)}$	B1	
	$\frac{0.7v^2}{2} = 1.8 + 1.8 - 0.7g(0.3 - 0.0875)\sin 30 - \frac{20 \times 0.0875^2}{(2 \times 0.5)}$	M1	Attempt to set up a 5 term energy equation
		A1	Correct equation
	$v = 2.78 \text{ ms}^{-1}$	A1	
		6	

Question	Answer	Marks	Guidance
6(i)	r = 0.6 - (0.4 - 0.3) = 0.5	B1	
	T=0.3g	B1	Resolve vertically for Q
	$0.2v^2 / 0.5 = 0.3g$	M1	Use Newton's Second Law horizontally for P
	$v = 2.74 \text{ ms}^{-1}$	A1	
		4	
6(ii)	r = 0.5 + e	B1	e = extension of the string
	$T = \frac{15e}{0.3} = 50e$	B1	Use $T = \lambda x/l$
	$0.2 \times 8^2 (5+e) = 50e + 0.3g$	M1	Use Newton's Second Law horizontally with $a = r\omega^2$
	$e = \frac{(6.4 - 3)}{(50 - 12.8)} (= 0.0914)$	A1	
	HP = 0.591 m	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	Height of conical tip = $1.2 \times \frac{0.2}{0.5} = 0.48$	M1	Use ratio of corresponding sides, similar figures
	Cylindrical height = $1.2 - 0.48 = 0.72$	A1	AG
	Volume removed = $\pi 0.2^2 \times \frac{0.48}{3} + \pi 0.2^2 \times 0.72$	M1	
	$(=0.0064\pi + 0.0288\pi)$		
	Volume removed = 0.0352π	A1	AG
		4	
7(ii)	Moment of cone removed about the base $= 0.0064\pi(0.72 + \frac{0.48}{4}) = 0.0064\pi \times 0.84$	B1	
	Moment of cylinder removed about the base $= 0.0288\pi \times \frac{0.72}{2} = 0.0288\pi \times 0.36$	B1	
	Moment of the original cone about the base $= \pi \ 0.5^2 \times \frac{1.2}{3} \times 0.3 = 0.1\pi \times 0.3$	B1	
		M1	Attempt to take moments about the base
	$0.1\pi \times 0.3 = 0.0064\pi \times 0.84 + 0.0288\pi \times 0.36 + 0.0648\pi x$	A1	Note 0.0648π is the volume of the object
	x = 0.22 m	A1	
		6	