Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(i)	$\tan\theta = 12/20$	M1	θ is the angle of projection
	θ (= 30.96) = 31(.0)°	A1	
	$V\cos 30.96 = \frac{20}{0.9}$	M1	Use horizontal motion. Allow their θ for the M mark.
	$V = 25.9 \text{ m s}^{-1}$	A1	
	Total:	4	
1(ii)	H = 25.9sin31 × 0.9 - g × $\frac{0.9^2}{2}$ (= 7.948)	M1	Use s = ut + $\frac{1}{2}at^2$ vertically. H is the height above the ground. Allow their V and θ for the M mark
	AD(-12, 7.05) = 4.05 m	A 1	Allow: $AD = 4.06$
	AB(=12 - 7.95) = 4.05 m	AI	Allow $AB = 4.06$
	Total:	2	
2	$EPE = 24(x - 0.6)^2 / (2 \times 0.6)$	B1	Correct EPE term. Note $x = OP$
	$0.4 \times 1.5^{2}/2 = 0.4gx - 24(x - 0.6)^{2}/(2 \times 0.6)$ [20 x ² - 28x + 7.65 = 0 or equivalent]	M1	Attempt to find a 3 term energy equation
		M1	Attempt to solve the 3 term quadratic equation
	OP = 1.0279 m, 0.372 m (reject)	A1	Correct answer chosen
	$0.4 \times 1.5^2/2 = 0.4$ gx	M1	Note the particle is moving upwards and the string is slack
	OP = 0.1125 m	A1	
	Total:	6	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2	Alternative method		
	$EPE = 24 x^2 / (2 \times 0.6)$	B1	<i>x</i> is the extension
	$0.4 \times 1.5^{2}/2 = 0.4g(x + 0.6) - 24 x^{2}/(2 \times 0.6)$ [20 x ² - 4x - 1.95 = 0 or equivalent]	M1	Attempt to find a 3 term energy equation
		M1	Attempt to solve the 3 term quadratic equation
	[x = 0.42787, -0.22787 .reject] OP = 0.6 + 0.42787 = 1.0279	A1	
	$0.4 \times 1.5^2/2 = 0.4$ g(x + 0.6) [x = -0.4875]	M1	Note the particle is moving upwards and the string is slack
	OP = 0.6 - 0.4875 = 0.1125	A1	
	Total:	6	
3(i)	$d = x\sin\theta/2 - a\cos\theta \text{ or equivalent}$	B1	Note d is the distance of the C of M of BC from the vertical through A
	$a(a\cos\theta)/2 = x(x\sin\theta/2 - a\cos\theta)$	M1	Take moments about A
	$x^2 \tan\theta - 2ax - a^2 = 0 \qquad AG$	A1	
	Total:	3	
3(ii)	$1.25 x^2 - 2ax - a^2 = 0$ [x = 2a and x = -2a/5]	M1	Attempts to solve the equation
	Length $(=2a+a)=3a$	A1	
	Total:	2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
4(i)	$x = (20\cos 30)$ t or $10\sqrt{3}$ t	B1	Use horizontal motion
	$y = (20\sin 30)t - \frac{1}{2}gt^2$ or $10t - 5t^2$	B1	Use vertical motion
	$y = (20\sin 30)[x/(20\cos 30)] - 5[x/(20\cos 30)]^2$	M1	Attempt to eliminate t
	$y = x/\sqrt{3} - x^2/60$ or $0.577x - 0.0167 x^2$	A1	
	Total:	4	
4(ii)	$x/\sqrt{3} - x^2/60 = (x+15)/\sqrt{3} - (x+15)^2/60$	M1	Simplifies to $0 = \frac{15}{\sqrt{3}} - \frac{(30x+225)}{60}$
	x = 9.821	A1	
	y = 4.06(25) m	A1	
	Total:	3	
	Alternative method		
	$0.577x - 0.0167 x^{2} = 0.577(x+15) - 0.0167(x+15)^{2}$	M1	
	<i>x</i> = 9.775	A1	
	<i>y</i> = 4.044	A1	
	Total:	3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$\tan\theta = (0.6 - 0.5)/0.4 \ (= 1/4)$	B1	$\boldsymbol{\theta}$ is the angle made by the base and the vertical
	$\tan\theta = \overline{x} / 0.6$	M1	
	$\overline{x} = 0.15 \text{ m}$ AG	A1	
	Total:	3	
5(ii)	$ \begin{aligned} &(\pi 0.6^2 \times 0.8/3) \times (0.8/4) - [\pi (0.5^2 - x^2) \times 0.4] \times (0.4/2) \\ &= [\pi 0.6^2 \times 0.8/3 + \pi (0.5^2 - x^2) \times 0.4] \overline{x} \end{aligned} $	M1 A1	Attempts to take moments about the base of the cone using their \overline{x} Note \overline{x} =0.15 Correct equation for the A mark.
		M1	Attempts to solve the equation
	x = 0.464	A1	Note $x^2 = 0.216$
	Total:	4	
6(i)	$\cos\theta = 0.5 \text{ and } \sin\theta = \sqrt{3}/2$	B1	θ is the angle that AP makes with the horizontal. Note $\tan \theta = \sqrt{3}$
	$T\sin\theta = 0.2 \text{ g}$	M1	Resolve vertically for P. Note tension in BP is zero
	$T\cos\theta = 0.2\omega^2 \times 0.3$	M1	Use Newton's Second Law horizontally
	$\omega = 4.39 \text{ rad } s^{-1}$	A1	
	Total:	4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(ii)	$T_A \sin \theta = 0.2 \text{ g} + T_B \sin \theta$	M1	Resolve vertically for P
	$T_A \sin\theta = 0.2 \text{ g} + 5 \sin\theta$	M1	Use $T_B = 5$
	$T_A = 7.309$	A1	
	$5\cos\theta + 7.309\cos\theta = 0.2 v^2 / 0.3$	M1	Use Newton's Second Law horizontally
	$v = 3.04 \text{ m s}^{-1}$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	$0.2 dv/dt = 0.2 g + 0.6t - k e^{-t}$	M1	Use Newton's Second Law downwards
	$dv/dt = 10 + 3t - 5 ke^{-t} $ AG	A1	
	Total:	2	
7(ii)	$dv/dt = 10 - 5k e^0 = 0$	M1	Recognise that $dv/dt = 0$ when $t = 0$
		M1	Attempts to solve the equation
7(ii)	k = 2	A1	
	Total:	3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
7(iii)	$\int dv = \int (10 + 3\mathbf{t} - 5\mathbf{k} e^{-t}) \mathrm{dt}$	M1	Attempts to integrate the equation from part i with k not replaced
	$[v = 10t + 3t^{2}/2 + 5e^{-t} + c, v = 0, t = 0 \text{ so } c = -5]$ v = 10t + 3t ² /2 + 5e ^{-t} - 5	A1	
	$\int dx = \int (10t + 3t^2/2 + 5e^{-t} - 5)dt$ $x = 5t^2 + t^3/2 - 5e^{-t} - 5t + c$	M1	Attempts to integrate again. Allow their k or just k not replaced
	x = 0, t = 0, so c = 5 and substitutes t = 2 $x = 5 \times 2^{2} + 2^{3}/2 - 5e^{-2} - 5 \times 2 + 5$	M1	
	Height = 18.3 m	A1	
	Total:	5	