Question	Answer	Marks	Guidance
1(i)	$\tan \theta=12 / 20$	M1	θ is the angle of projection
	$\theta(=30.96)=31(.0)^{\circ}$	A1	
	$V \cos 30.96=\frac{20}{0.9}$	M1	Use horizontal motion. Allow their θ for the M mark.
	$\mathrm{V}=25.9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Total:	4	
1(ii)	$\mathrm{H}=25.9 \sin 31 \times 0.9-\mathrm{g} \times \frac{0.9^{2}}{2}(=7.948)$	M1	Use $\mathrm{s}=\mathrm{ut}+\frac{1}{2} a t^{2}$ vertically. H is the height above the ground. Allow their V and θ for the M mark.
	$\mathrm{AB}(=12-7.95)=4.05 \mathrm{~m}$	A1	Allow $\mathrm{AB}=4.06$
	Total:	2	
2	$\mathrm{EPE}=24(x-0.6)^{2} /(2 \times 0.6)$	B1	Correct EPE term. Note $x=$ OP
	$\begin{aligned} & 0.4 \times 1.5^{2} / 2=0.4 \mathrm{~g} x-24(x-0.6)^{2} /(2 \times 0.6) \\ & {\left[20 x^{2}-28 x+7.65=0 \text { or equivalent }\right]} \end{aligned}$	M1	Attempt to find a 3 term energy equation
		M1	Attempt to solve the 3 term quadratic equation
	$\mathrm{OP}=1.0279 \mathrm{~m}, 0.372 \mathrm{~m}$ (reject)	A1	Correct answer chosen
	$0.4 \times 1.5^{2} / 2=0.4 \mathrm{~g} x$	M1	Note the particle is moving upwards and the string is slack
	$\mathrm{OP}=0.1125 \mathrm{~m}$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
2	Alternative method		
	$\mathrm{EPE}=24 x^{2} /(2 \times 0.6)$	B1	x is the extension
	$\begin{aligned} & 0.4 \times 1.5^{2} / 2=0.4 \mathrm{~g}(x+0.6)-24 x^{2} /(2 \times 0.6) \\ & {\left[20 x^{2}-4 x-1.95=0 \text { or equivalent }\right]} \end{aligned}$	M1	Attempt to find a 3 term energy equation
		M1	Attempt to solve the 3 term quadratic equation
	$[x=0.42787,-0.22787$.reject $]$ OP $=0.6+0.42787=1.0279$	A1	
	$0.4 \times 1.5^{2} / 2=0.4 \mathrm{~g}(x+0.6)[x=-0.4875]$	M1	Note the particle is moving upwards and the string is slack
	$\mathrm{OP}=0.6-0.4875=0.1125$	A1	
	Total:	6	
3(i)	$\mathrm{d}=x \sin \theta / 2-\operatorname{acos} \theta$ or equivalent	B1	Note d is the distance of the C of M of BC from the vertical through A
	$\mathrm{a}(\mathrm{a} \cos \theta) / 2=x(x \sin \theta / 2-\mathrm{a} \cos \theta)$	M1	Take moments about A
	$x^{2} \tan \theta-2 \mathrm{a} x-a^{2}=0 \quad$ AG	A1	
	Total:	3	
3(ii)	$1.25 x^{2}-2 \mathrm{a} x-a^{2}=0 \quad[x=2 \mathrm{a}$ and $x=-2 \mathrm{a} / 5]$	M1	Attempts to solve the equation
	Length $(=2 \mathrm{a}+\mathrm{a})=3 \mathrm{a}$	A1	
	Total:	2	

Question	Answer	Marks	Guidance
4(i)	$x=(20 \cos 30) \mathrm{t}$ or $10 \sqrt{3} \mathrm{t}$	B1	Use horizontal motion
	$y=(20 \sin 30) \mathrm{t}-\frac{1}{2} \mathrm{~g} t^{2}$ or $10 \mathrm{t}-5 t^{2}$	B1	Use vertical motion
	$y=(20 \sin 30)[x /(20 \cos 30)]-5[x /(20 \cos 30)]^{2}$	M1	Attempt to eliminate t
	$y=x / \sqrt{3}-x^{2} / 60$ or $0.577 x-0.0167 x^{2}$	A1	
	Total:	4	
4(ii)	$x / \sqrt{3}-x^{2} / 60=(x+15) / \sqrt{3}-(x+15)^{2} / 60$	M1	Simplifies to $0=15 / \sqrt{3}-(30 x+225) / 60$
	$x=9.821$	A1	
	$\mathrm{y}=4.06(25) \mathrm{m}$	A1	
	Total:	3	
	Alternative method		
	$0.577 x-0.0167 x^{2}=0.577(x+15)-0.0167(x+15)^{2}$	M1	
	$x=9.775$	A1	
	$y=4.044$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
5(i)	$\tan \theta=(0.6-0.5) / 0.4(=1 / 4)$	B1	θ is the angle made by the base and the vertical
	$\tan \theta=\bar{x} / 0.6$	M1	
	$\bar{x}=0.15 \mathrm{~m} \quad$ AG	A1	
	Total:	3	
5(ii)	$\begin{aligned} & \left(\pi 0.6^{2} \times 0.8 / 3\right) \times(0.8 / 4)-\left[\pi\left(0.5^{2}-x^{2}\right) \times 0.4\right] \times(0.4 / 2) \\ & =\left[\pi 0.6^{2} \times 0.8 / 3+\pi\left(0.5^{2}-x^{2}\right) \times 0.4\right] \bar{x} \end{aligned}$	$\begin{array}{r} \text { M1 } \\ \text { A1 } \end{array}$	Attempts to take moments about the base of the cone using their \bar{x} Note $\bar{x}=0.15$ Correct equation for the A mark.
		M1	Attempts to solve the equation
	$x=0.464$	A1	Note $x^{2}=0.216$
	Total:	4	
6(i)	$\cos \theta=0.5$ and $\sin \theta=\sqrt{3} / 2$	B1	θ is the angle that AP makes with the horizontal. Note $\tan \theta=\sqrt{3}$
	$\mathrm{T} \sin \theta=0.2 \mathrm{~g}$	M1	Resolve vertically for P. Note tension in BP is zero
	$\mathrm{T} \cos \theta=0.2 \omega^{2} \times 0.3$	M1	Use Newton's Second Law horizontally
	$\omega=4.39 \mathrm{rad} s^{-1}$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
6(ii)	$T_{A} \sin \theta=0.2 \mathrm{~g}+T_{B} \sin \theta$	M1	Resolve vertically for P
	$T_{A} \sin \theta=0.2 \mathrm{~g}+5 \sin \theta$	$\mathbf{M 1}$	Use $T_{B}=5$
	$T_{A}=7.309$	$\mathbf{A 1}$	
	$5 \cos \theta+7.309 \cos \theta=0.2 v^{2} / 0.3$	M1	Use Newton's Second Law horizontally
	$\mathrm{v}=3.04 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer		Marks	Guidance
7(i)	$0.2 \mathrm{dv} / \mathrm{dt}=0.2 \mathrm{~g}+0.6 \mathrm{t}-\mathrm{k} e^{-t}$		M1	Use Newton's Second Law downwards
	$\mathrm{dv} / \mathrm{dt}=10+3 \mathrm{t}-5 k e^{-t}$	AG	A1	
		Total:	2	
7(ii)	$\mathrm{dv} / \mathrm{dt}=10-5 \mathrm{k} e^{0}=0$		M1	Recognise that $\mathrm{dv} / \mathrm{dt}=0$ when $\mathrm{t}=0$
			M1	Attempts to solve the equation
7(ii)	$\mathrm{k}=2$		A1	
		Total:	3	

Question	Answer	Marks	Guidance
7(iii)	$\int d v=\int\left(10+3 \mathrm{t}-5 \mathrm{k} e^{-t}\right) \mathrm{dt}$	M1	Attempts to integrate the equation from part i with k not replaced
	$\begin{aligned} & {\left[\mathrm{v}=10 \mathrm{t}+3 t^{2} / 2+5 e^{-t}+\mathrm{c}, \mathrm{v}=0, \mathrm{t}=0 \text { so } \mathrm{c}=-5\right]} \\ & \mathrm{v}=10 \mathrm{t}+3 t^{2} / 2+5 e^{-t}-5 \end{aligned}$	A1	
	$\begin{aligned} & \int d x=\int\left(10 \mathrm{t}+3 t^{2} / 2+5 e^{-t}-5\right) \mathrm{dt} \\ & x=5 t^{2}+t^{3} / 2-5 e^{-t}-5 \mathrm{t}+\mathrm{c} \end{aligned}$	M1	Attempts to integrate again. Allow their k or just k not replaced
	$\begin{aligned} & x=0, \mathrm{t}=0, \text { so } \mathrm{c}=5 \text { and substitutes } \mathrm{t}=2 \\ & x=5 \times 2^{2}+2^{3} / 2-5 e^{-2}-5 \times 2+5 \end{aligned}$	M1	
	Height $=18.3 \mathrm{~m}$	A1	
	Total:	5	

